Pan, Jeff Z.
Knowledge-Aware Neuron Interpretation for Scene Classification
Guan, Yong, Lecue, Freddy, Chen, Jiaoyan, Li, Ru, Pan, Jeff Z.
Although neural models have achieved remarkable performance, they still encounter doubts due to the intransparency. To this end, model prediction explanation is attracting more and more attentions. However, current methods rarely incorporate external knowledge and still suffer from three limitations: (1) Neglecting concept completeness. Merely selecting concepts may not sufficient for prediction. (2) Lacking concept fusion. Failure to merge semantically-equivalent concepts. (3) Difficult in manipulating model behavior. Lack of verification for explanation on original model. To address these issues, we propose a novel knowledge-aware neuron interpretation framework to explain model predictions for image scene classification. Specifically, for concept completeness, we present core concepts of a scene based on knowledge graph, ConceptNet, to gauge the completeness of concepts. Our method, incorporating complete concepts, effectively provides better prediction explanations compared to baselines. Furthermore, for concept fusion, we introduce a knowledge graph-based method known as Concept Filtering, which produces over 23% point gain on neuron behaviors for neuron interpretation. At last, we propose Model Manipulation, which aims to study whether the core concepts based on ConceptNet could be employed to manipulate model behavior. The results show that core concepts can effectively improve the performance of original model by over 26%.
Benchmarking Large Language Models in Complex Question Answering Attribution using Knowledge Graphs
Hu, Nan, Chen, Jiaoyan, Wu, Yike, Qi, Guilin, Bi, Sheng, Wu, Tongtong, Pan, Jeff Z.
The attribution of question answering is to provide citations for supporting generated statements, and has attracted wide research attention. The current methods for automatically evaluating the attribution, which are often based on Large Language Models (LLMs), are still inadequate, particularly in recognizing subtle differences between attributions, and complex relationships between citations and statements. To compare these attribution evaluation methods and develop new ones, we introduce a set of fine-grained categories (i.e., supportive, insufficient, contradictory and irrelevant) for measuring the attribution, and develop a Complex Attributed Question Answering (CAQA) benchmark by leveraging knowledge graphs (KGs) for automatically generating attributions of different categories to question-answer pairs. Our analysis reveals that existing evaluators perform poorly under fine-grained attribution settings and exhibit weaknesses in complex citation-statement reasoning. Our CAQA benchmark, validated with human annotations, emerges as a promising tool for selecting and developing LLM attribution evaluators.
UniMS-RAG: A Unified Multi-source Retrieval-Augmented Generation for Personalized Dialogue Systems
Wang, Hongru, Huang, Wenyu, Deng, Yang, Wang, Rui, Wang, Zezhong, Wang, Yufei, Mi, Fei, Pan, Jeff Z., Wong, Kam-Fai
Large Language Models (LLMs) has shown exceptional capabilities in many natual language understanding and generation tasks. However, the personalization issue still remains a much-coveted property, especially when it comes to the multiple sources involved in the dialogue system. To better plan and incorporate the use of multiple sources in generating personalized response, we firstly decompose it into three sub-tasks: Knowledge Source Selection, Knowledge Retrieval, and Response Generation. We then propose a novel Unified Multi-Source Retrieval-Augmented Generation system (UniMS-RAG) Specifically, we unify these three sub-tasks with different formulations into the same sequence-to-sequence paradigm during the training, to adaptively retrieve evidences and evaluate the relevance on-demand using special tokens, called acting tokens and evaluation tokens. Enabling language models to generate acting tokens facilitates interaction with various knowledge sources, allowing them to adapt their behavior to diverse task requirements. Meanwhile, evaluation tokens gauge the relevance score between the dialogue context and the retrieved evidence. In addition, we carefully design a self-refinement mechanism to iteratively refine the generated response considering 1) the consistency scores between the generated response and retrieved evidence; and 2) the relevance scores. Experiments on two personalized datasets (DuLeMon and KBP) show that UniMS-RAG achieves state-of-the-art performance on the knowledge source selection and response generation task with itself as a retriever in a unified manner. Extensive analyses and discussions are provided for shedding some new perspectives for personalized dialogue systems.
Generalizing to Unseen Elements: A Survey on Knowledge Extrapolation for Knowledge Graphs
Chen, Mingyang, Zhang, Wen, Geng, Yuxia, Xu, Zezhong, Pan, Jeff Z., Chen, Huajun
Knowledge graphs (KGs) have become valuable knowledge resources in various applications, and knowledge graph embedding (KGE) methods have garnered increasing attention in recent years. However, conventional KGE methods still face challenges when it comes to handling unseen entities or relations during model testing. To address this issue, much effort has been devoted to various fields of KGs. In this paper, we use a set of general terminologies to unify these methods and refer to them collectively as Knowledge Extrapolation. We comprehensively summarize these methods, classified by our proposed taxonomy, and describe their interrelationships. Additionally, we introduce benchmarks and provide comparisons of these methods based on aspects that are not captured by the taxonomy. Finally, we suggest potential directions for future research.
Prompting Disentangled Embeddings for Knowledge Graph Completion with Pre-trained Language Model
Geng, Yuxia, Chen, Jiaoyan, Zeng, Yuhang, Chen, Zhuo, Zhang, Wen, Pan, Jeff Z., Wang, Yuxiang, Xu, Xiaoliang
Both graph structures and textual information play a critical role in Knowledge Graph Completion (KGC). With the success of Pre-trained Language Models (PLMs) such as BERT, they have been applied for text encoding for KGC. However, the current methods mostly prefer to fine-tune PLMs, leading to huge training costs and limited scalability to larger PLMs. In contrast, we propose to utilize prompts and perform KGC on a frozen PLM with only the prompts trained. Accordingly, we propose a new KGC method named PDKGC with two prompts -- a hard task prompt which is to adapt the KGC task to the PLM pre-training task of token prediction, and a disentangled structure prompt which learns disentangled graph representation so as to enable the PLM to combine more relevant structure knowledge with the text information. With the two prompts, PDKGC builds a textual predictor and a structural predictor, respectively, and their combination leads to more comprehensive entity prediction. Solid evaluation on two widely used KGC datasets has shown that PDKGC often outperforms the baselines including the state-of-the-art, and its components are all effective. Our codes and data are available at https://github.com/genggengcss/PDKGC.
Code-Switching with Word Senses for Pretraining in Neural Machine Translation
Iyer, Vivek, Barba, Edoardo, Birch, Alexandra, Pan, Jeff Z., Navigli, Roberto
Lexical ambiguity is a significant and pervasive challenge in Neural Machine Translation (NMT), with many state-of-the-art (SOTA) NMT systems struggling to handle polysemous words (Campolungo et al., 2022). The same holds for the NMT pretraining paradigm of denoising synthetic "code-switched" text (Pan et al., 2021; Iyer et al., 2023), where word senses are ignored in the noising stage -- leading to harmful sense biases in the pretraining data that are subsequently inherited by the resulting models. In this work, we introduce Word Sense Pretraining for Neural Machine Translation (WSP-NMT) - an end-to-end approach for pretraining multilingual NMT models leveraging word sense-specific information from Knowledge Bases. Our experiments show significant improvements in overall translation quality. Then, we show the robustness of our approach to scale to various challenging data and resource-scarce scenarios and, finally, report fine-grained accuracy improvements on the DiBiMT disambiguation benchmark. Our studies yield interesting and novel insights into the merits and challenges of integrating word sense information and structured knowledge in multilingual pretraining for NMT.
Multi-view Contrastive Learning for Entity Typing over Knowledge Graphs
Hu, Zhiwei, Gutiรฉrrez-Basulto, Vรญctor, Xiang, Zhiliang, Li, Ru, Pan, Jeff Z.
Knowledge graph entity typing (KGET) aims at inferring plausible types of entities in knowledge graphs. Existing approaches to KGET focus on how to better encode the knowledge provided by the neighbors and types of an entity into its representation. However, they ignore the semantic knowledge provided by the way in which types can be clustered together. In this paper, we propose a novel method called Multi-view Contrastive Learning for knowledge graph Entity Typing (MCLET), which effectively encodes the coarse-grained knowledge provided by clusters into entity and type embeddings. MCLET is composed of three modules: i) Multi-view Generation and Encoder module, which encodes structured information from entity-type, entity-cluster and cluster-type views; ii) Cross-view Contrastive Learning module, which encourages different views to collaboratively improve view-specific representations of entities and types; iii) Entity Typing Prediction module, which integrates multi-head attention and a Mixture-of-Experts strategy to infer missing entity types. Extensive experiments show the strong performance of MCLET compared to the state-of-the-art
Instances and Labels: Hierarchy-aware Joint Supervised Contrastive Learning for Hierarchical Multi-Label Text Classification
U, Simon Chi Lok, He, Jie, Gutiรฉrrez-Basulto, Vรญctor, Pan, Jeff Z.
Hierarchical multi-label text classification (HMTC) aims at utilizing a label hierarchy in multi-label classification. Recent approaches to HMTC deal with the problem of imposing an over-constrained premise on the output space by using contrastive learning on generated samples in a semi-supervised manner to bring text and label embeddings closer. However, the generation of samples tends to introduce noise as it ignores the correlation between similar samples in the same batch. One solution to this issue is supervised contrastive learning, but it remains an underexplored topic in HMTC due to its complex structured labels. To overcome this challenge, we propose $\textbf{HJCL}$, a $\textbf{H}$ierarchy-aware $\textbf{J}$oint Supervised $\textbf{C}$ontrastive $\textbf{L}$earning method that bridges the gap between supervised contrastive learning and HMTC. Specifically, we employ both instance-wise and label-wise contrastive learning techniques and carefully construct batches to fulfill the contrastive learning objective. Extensive experiments on four multi-path HMTC datasets demonstrate that HJCL achieves promising results and the effectiveness of Contrastive Learning on HMTC.
HyperFormer: Enhancing Entity and Relation Interaction for Hyper-Relational Knowledge Graph Completion
Hu, Zhiwei, Gutiรฉrrez-Basulto, Vรญctor, Xiang, Zhiliang, Li, Ru, Pan, Jeff Z.
Hyper-relational knowledge graphs (HKGs) extend standard knowledge graphs by associating attribute-value qualifiers to triples, which effectively represent additional fine-grained information about its associated triple. Hyper-relational knowledge graph completion (HKGC) aims at inferring unknown triples while considering its qualifiers. Most existing approaches to HKGC exploit a global-level graph structure to encode hyper-relational knowledge into the graph convolution message passing process. However, the addition of multi-hop information might bring noise into the triple prediction process. To address this problem, we propose HyperFormer, a model that considers local-level sequential information, which encodes the content of the entities, relations and qualifiers of a triple. More precisely, HyperFormer is composed of three different modules: an entity neighbor aggregator module allowing to integrate the information of the neighbors of an entity to capture different perspectives of it; a relation qualifier aggregator module to integrate hyper-relational knowledge into the corresponding relation to refine the representation of relational content; a convolution-based bidirectional interaction module based on a convolutional operation, capturing pairwise bidirectional interactions of entity-relation, entity-qualifier, and relation-qualifier. realize the depth perception of the content related to the current statement. Furthermore, we introduce a Mixture-of-Experts strategy into the feed-forward layers of HyperFormer to strengthen its representation capabilities while reducing the amount of model parameters and computation. Extensive experiments on three well-known datasets with four different conditions demonstrate HyperFormer's effectiveness. Datasets and code are available at https://github.com/zhiweihu1103/HKGC-HyperFormer.
Large Language Models and Knowledge Graphs: Opportunities and Challenges
Pan, Jeff Z., Razniewski, Simon, Kalo, Jan-Christoph, Singhania, Sneha, Chen, Jiaoyan, Dietze, Stefan, Jabeen, Hajira, Omeliyanenko, Janna, Zhang, Wen, Lissandrini, Matteo, Biswas, Russa, de Melo, Gerard, Bonifati, Angela, Vakaj, Edlira, Dragoni, Mauro, Graux, Damien
Large Language Models (LLMs) have taken Knowledge Representation -- and the world -- by storm. This inflection point marks a shift from explicit knowledge representation to a renewed focus on the hybrid representation of both explicit knowledge and parametric knowledge. In this position paper, we will discuss some of the common debate points within the community on LLMs (parametric knowledge) and Knowledge Graphs (explicit knowledge) and speculate on opportunities and visions that the renewed focus brings, as well as related research topics and challenges.