Ozaki, Ana
On the Complexity of Learning Description Logic Ontologies
Ozaki, Ana
Ontologies are a popular way of representing domain knowledge, in particular, knowledge in domains related to life sciences. (Semi-)automating the process of building an ontology has attracted researchers from different communities into a field called "Ontology Learning". We provide a formal specification of the exact and the probably approximately correct learning models from computational learning theory. Then, we recall from the literature complexity results for learning lightweight description logic (DL) ontologies in these models. Finally, we highlight other approaches proposed in the literature for learning DL ontologies.
Automated Reasoning in Temporal DL-Lite
Tahrat, Sabiha, Braun, German, Artale, Alessandro, Gario, Marco, Ozaki, Ana
This paper investigates the feasibility of automated reasoning over temporal DL-Lite (TDL-Lite) knowledge bases (KBs). We test the usage of off-the-shelf LTL reasoners to check satisfiability of TDL-Lite KBs. In particular, we test the robustness and the scalability of reasoners when dealing with TDL-Lite TBoxes paired with a temporal ABox. We conduct various experiments to analyse the performance of different reasoners by randomly generating TDL-Lite KBs and then measuring the running time and the size of the translations. Furthermore, in an effort to make the usage of TDL-Lite KBs a reality, we present a fully fledged tool with a graphical interface to design them. Our interface is based on conceptual modelling principles and it is integrated with our translation tool and a temporal reasoner.
Enriching Ontology-based Data Access with Provenance (Extended Version)
Calvanese, Diego, Lanti, Davide, Ozaki, Ana, Penaloza, Rafael, Xiao, Guohui
Ontology-based data access (OBDA) is a popular paradigm for querying heterogeneous data sources by connecting them through mappings to an ontology. In OBDA, it is often difficult to reconstruct why a tuple occurs in the answer of a query. We address this challenge by enriching OBDA with provenance semirings, taking inspiration from database theory. In particular, we investigate the problems of (i) deciding whether a provenance annotated OBDA instance entails a provenance annotated conjunctive query, and (ii) computing a polynomial representing the provenance of a query entailed by a provenance annotated OBDA instance. Differently from pure databases, in our case these polynomials may be infinite. To regain finiteness, we consider idempotent semirings, and study the complexity in the case of DL-Lite ontologies. We implement Task (ii) in a state-of-the-art OBDA system and show the practical feasibility of the approach through an extensive evaluation against two popular benchmarks.
Learning Ontologies with Epistemic Reasoning: The EL Case
Ozaki, Ana, Troquard, Nicolas
We investigate the problem of learning description logic ontologies from entailments via queries, using epistemic reasoning. We introduce a new learning model consisting of epistemic membership and example queries and show that polynomial learnability in this model coincides with polynomial learnability in Angluin's exact learning model with membership and equivalence queries. We then instantiate our learning framework to EL and show some complexity results for an epistemic extension of EL where epistemic operators can be applied over the axioms. Finally, we transfer known results for EL ontologies and its fragments to our learning model based on epistemic reasoning.
A Model for Learning Description Logic Ontologies Based on Exact Learning
Konev, Boris (University of Liverpool) | Ozaki, Ana (University of Liverpool) | Wolter, Frank (University of Liverpool)
We investigate the problem of learning description logic (DL) ontologies in Angluin et al.’s framework of exact learning via queries posed to an oracle. We consider membership queries of the form “is a tuple a of individuals a certain answer to a data retrieval query q in a given ABox and the unknown target ontology?” and completeness queries of the form “does a hypothesis ontology entail the unknown target ontology?” Given a DL L and a data retrieval query language Q, we study polynomial learnability of ontologies in L using data retrieval queries in Q and provide an almost complete classification for DLs that are fragments of EL with role inclusions and of DL-Lite and for data retrieval queries that range from atomic queries and EL/ELI-instance queries to conjunctive queries. Some results are proved by non-trivial reductions to learning from subsumption examples.