Not enough data to create a plot.
Try a different view from the menu above.
Owen, Louis
A Refined Analysis of Massive Activations in LLMs
Owen, Louis, Chowdhury, Nilabhra Roy, Kumar, Abhay, Güra, Fabian
Motivated in part by their relevance for low-precision training and quantization, massive activations in large language models (LLMs) have recently emerged as a topic of interest. However, existing analyses are limited in scope, and generalizability across architectures is unclear. This paper helps address some of these gaps by conducting an analysis of massive activations across a broad range of LLMs, including both GLU-based and non-GLU-based architectures. Our findings challenge several prior assumptions, most importantly: (1) not all massive activations are detrimental, i.e. suppressing them does not lead to an explosion of perplexity or a collapse in downstream task performance; (2) proposed mitigation strategies such as Attention KV bias are model-specific and ineffective in certain cases. We consequently investigate novel hybrid mitigation strategies; in particular pairing Target Variance Rescaling (TVR) with Attention KV bias or Dynamic Tanh (DyT) successfully balances the mitigation of massive activations with preserved downstream model performance in the scenarios we investigated. Our code is available at: https://github.com/bluorion-com/refine_massive_activations.
Variance Control via Weight Rescaling in LLM Pre-training
Owen, Louis, Kumar, Abhay, Chowdhury, Nilabhra Roy, Güra, Fabian
The outcome of Large Language Model (LLM) pre-training strongly depends on weight initialization and variance control strategies. Although the importance of initial variance control has been well documented in neural networks in general, the literature on initialization and management of its growth during LLM pre-training, specifically, is somewhat sparse. In this paper, we introduce the Layer Index Rescaling (LIR) weight initialization scheme, and the Target Variance Rescaling (TVR) variance control strategy. Experiments on a 1B parameter LLaMA model demonstrate that better variance management using these techniques yields substantial improvements in downstream task performance (up to 4.6% on common pre-training benchmarks) and reduces extreme activation values, thus mitigating challenges associated with quantization and low-precision training.
Komodo: A Linguistic Expedition into Indonesia's Regional Languages
Owen, Louis, Tripathi, Vishesh, Kumar, Abhay, Ahmed, Biddwan
The recent breakthroughs in Large Language Models (LLMs) have mostly focused on languages with easily available and sufficient resources, such as English. However, there remains a significant gap for languages that lack sufficient linguistic resources in the public domain. Our work introduces Komodo-7B, 7-billion-parameter Large Language Models designed to address this gap by seamlessly operating across Indonesian, English, and 11 regional languages in Indonesia. Komodo-7B is a family of LLMs that consist of Komodo-7B-Base and Komodo-7B-Instruct. Komodo-7B-Instruct stands out by achieving state-of-the-art performance in various tasks and languages, outperforming the benchmarks set by OpenAI's GPT-3.5, Cohere's Aya-101, Llama-2-Chat-13B, Mixtral-8x7B-Instruct-v0.1, Gemma-7B-it , and many more. This model not only demonstrates superior performance in both language-specific and overall assessments but also highlights its capability to excel in linguistic diversity. Our commitment to advancing language models extends beyond well-resourced languages, aiming to bridge the gap for those with limited linguistic assets. Additionally, Komodo-7B-Instruct's better cross-language understanding contributes to addressing educational disparities in Indonesia, offering direct translations from English to 11 regional languages, a significant improvement compared to existing language translation services. Komodo-7B represents a crucial step towards inclusivity and effectiveness in language models, providing to the linguistic needs of diverse communities.
BED: Bi-Encoder-Based Detectors for Out-of-Distribution Detection
Owen, Louis, Ahmed, Biddwan, Kumar, Abhay
This paper introduces a novel method leveraging bi-encoder-based detectors along with a comprehensive study comparing different out-of-distribution (OOD) detection methods in NLP using different feature extractors. The feature extraction stage employs popular methods such as Universal Sentence Encoder (USE), BERT, MPNET, and GLOVE to extract informative representations from textual data. The evaluation is conducted on several datasets, including CLINC150, ROSTD-Coarse, SNIPS, and YELLOW. Performance is assessed using metrics such as F1-Score, MCC, FPR@90, FPR@95, AUPR, an AUROC. The experimental results demonstrate that the proposed bi-encoder-based detectors outperform other methods, both those that require OOD labels in training and those that do not, across all datasets, showing great potential for OOD detection in NLP. The simplicity of the training process and the superior detection performance make them applicable to real-world scenarios. The presented methods and benchmarking metrics serve as a valuable resource for future research in OOD detection, enabling further advancements in this field. The code and implementation details can be found on our GitHub repository: https://github.com/yellowmessenger/ood-detection.