Well File:

 Oriol Vinyals




Relational recurrent neural networks

Neural Information Processing Systems

Memory-based neural networks model temporal data by leveraging an ability to remember information for long periods. It is unclear, however, whether they also have an ability to perform complex relational reasoning with the information they remember. Here, we first confirm our intuitions that standard memory architectures may struggle at tasks that heavily involve an understanding of the ways in which entities are connected - i.e., tasks involving relational reasoning. We then improve upon these deficits by using a new memory module - a Relational Memory Core (RMC) - which employs multi-head dot product attention to allow memories to interact. Finally, we test the RMC on a suite of tasks that may profit from more capable relational reasoning across sequential information, and show large gains in RL domains (e.g.


Classification Accuracy Score for Conditional Generative Models

Neural Information Processing Systems

Deep generative models (DGMs) of images are now sufficiently mature that they produce nearly photorealistic samples and obtain scores similar to the data distribution on heuristics such as Frechet Inception Distance (FID). These results, especially on large-scale datasets such as ImageNet, suggest that DGMs are learning the data distribution in a perceptually meaningful space and can be used in downstream tasks. To test this latter hypothesis, we use class-conditional generative models from a number of model classes--variational autoencoders, autoregressive models, and generative adversarial networks (GANs)--to infer the class labels of real data. We perform this inference by training an image classifier using only synthetic data and using the classifier to predict labels on real data. The performance on this task, which we call Classification Accuracy Score (CAS), reveals some surprising results not identified by traditional metrics and constitute our contributions. First, when using a state-of-the-art GAN (BigGAN-deep), Top-1 and Top-5 accuracy decrease by 27.9% and 41.6%, respectively, compared to the original data; and conditional generative models from other model classes, such as Vector-Quantized Variational Autoencoder-2 (VQ-VAE-2) and Hierarchical Autoregressive Models (HAMs), substantially outperform GANs on this benchmark. Second, CAS automatically surfaces particular classes for which generative models failed to capture the data distribution, and were previously unknown in the literature. Third, we find traditional GAN metrics such as Inception Score (IS) and FID neither predictive of CAS nor useful when evaluating non-GAN models. Furthermore, in order to facilitate better diagnoses of generative models, we open-source the proposed metric.


Generating Diverse High-Fidelity Images with VQ-VAE-2

Neural Information Processing Systems

We explore the use of Vector Quantized Variational AutoEncoder (VQ-VAE) models for large scale image generation. To this end, we scale and enhance the autoregressive priors used in VQ-VAE to generate synthetic samples of much higher coherence and fidelity than possible before. We use simple feed-forward encoder and decoder networks, making our model an attractive candidate for applications where the encoding and/or decoding speed is critical. Additionally, VQ-VAE requires sampling an autoregressive model only in the compressed latent space, which is an order of magnitude faster than sampling in the pixel space, especially for large images. We demonstrate that a multi-scale hierarchical organization of VQ-VAE, augmented with powerful priors over the latent codes, is able to generate samples with quality that rivals that of state of the art Generative Adversarial Networks on multifaceted datasets such as ImageNet, while not suffering from GAN's known shortcomings such as mode collapse and lack of diversity.


Strategic Attentive Writer for Learning Macro-Actions

Neural Information Processing Systems

We present a novel deep recurrent neural network architecture that learns to build implicit plans in an end-to-end manner purely by interacting with an environment in reinforcement learning setting. The network builds an internal plan, which is continuously updated upon observation of the next input from the environment. It can also partition this internal representation into contiguous sub-sequences by learning for how long the plan can be committed to - i.e. followed without replaning. Combining these properties, the proposed model, dubbed STRategic Attentive Writer (STRAW) can learn high-level, temporally abstracted macro-actions of varying lengths that are solely learnt from data without any prior information. These macro-actions enable both structured exploration and economic computation. We experimentally demonstrate that STRAW delivers strong improvements on several ATARI games by employing temporally extended planning strategies (e.g.


Conditional Image Generation with PixelCNN Decoders

Neural Information Processing Systems

This work explores conditional image generation with a new image density model based on the PixelCNN architecture. The model can be conditioned on any vector, including descriptive labels or tags, or latent embeddings created by other networks. When conditioned on class labels from the ImageNet database, the model is able to generate diverse, realistic scenes representing distinct animals, objects, landscapes and structures. When conditioned on an embedding produced by a convolutional network given a single image of an unseen face, it generates a variety of new portraits of the same person with different facial expressions, poses and lighting conditions. We also show that conditional PixelCNN can serve as a powerful decoder in an image autoencoder. Additionally, the gated convolutional layers in the proposed model improve the log-likelihood of PixelCNN to match the state-ofthe-art performance of PixelRNN on ImageNet, with greatly reduced computational cost.


Matching Networks for One Shot Learning

Neural Information Processing Systems

Learning from a few examples remains a key challenge in machine learning. Despite recent advances in important domains such as vision and language, the standard supervised deep learning paradigm does not offer a satisfactory solution for learning new concepts rapidly from little data. In this work, we employ ideas from metric learning based on deep neural features and from recent advances that augment neural networks with external memories. Our framework learns a network that maps a small labelled support set and an unlabelled example to its label, obviating the need for fine-tuning to adapt to new class types. We then define one-shot learning problems on vision (using Omniglot, ImageNet) and language tasks. Our algorithm improves one-shot accuracy on ImageNet from 87.6% to 93.2% and from 88.0% to 93.8% on Omniglot compared to competing approaches. We also demonstrate the usefulness of the same model on language modeling by introducing a one-shot task on the Penn Treebank.


A Neural Transducer

Neural Information Processing Systems

Sequence-to-sequence models have achieved impressive results on various tasks. However, they are unsuitable for tasks that require incremental predictions to be made as more data arrives or tasks that have long input sequences and output sequences. This is because they generate an output sequence conditioned on an entire input sequence. In this paper, we present a Neural Transducer that can make incremental predictions as more input arrives, without redoing the entire computation. Unlike sequence-to-sequence models, the Neural Transducer computes the next-step distribution conditioned on the partially observed input sequence and the partially generated sequence.