Plotting

 Oloko, Akintoye


NECE: Narrative Event Chain Extraction Toolkit

arXiv.org Artificial Intelligence

To understand a narrative, it is essential to comprehend the temporal event flows, especially those associated with main characters; however, this can be challenging with lengthy and unstructured narrative texts. To address this, we introduce NECE, an open-access, document-level toolkit that automatically extracts and aligns narrative events in the temporal order of their occurrence. Through extensive evaluations, we show the high quality of the NECE toolkit and demonstrates its downstream application in analyzing narrative bias regarding gender. We also openly discuss the shortcomings of the current approach, and potential of leveraging generative models in future works. Lastly the NECE toolkit includes both a Python library and a user-friendly web interface, which offer equal access to professionals and layman audience alike, to visualize event chain, obtain narrative flows, or study narrative bias.


Are Fairy Tales Fair? Analyzing Gender Bias in Temporal Narrative Event Chains of Children's Fairy Tales

arXiv.org Artificial Intelligence

Social biases and stereotypes are embedded in our culture in part through their presence in our stories, as evidenced by the rich history of humanities and social science literature analyzing such biases in children stories. Because these analyses are often conducted manually and at a small scale, such investigations can benefit from the use of more recent natural language processing methods that examine social bias in models and data corpora. Our work joins this interdisciplinary effort and makes a unique contribution by taking into account the event narrative structures when analyzing the social bias of stories. We propose a computational pipeline that automatically extracts a story's temporal narrative verb-based event chain for each of its characters as well as character attributes such as gender. We also present a verb-based event annotation scheme that can facilitate bias analysis by including categories such as those that align with traditional stereotypes. Through a case study analyzing gender bias in fairy tales, we demonstrate that our framework can reveal bias in not only the unigram verb-based events in which female and male characters participate but also in the temporal narrative order of such event participation.