Olmos, Pablo M.
Variational Mixture of HyperGenerators for Learning Distributions Over Functions
Koyuncu, Batuhan, Sanchez-Martin, Pablo, Peis, Ignacio, Olmos, Pablo M., Valera, Isabel
Recent approaches build on implicit neural representations (INRs) to propose generative models over function spaces. However, they are computationally costly when dealing with inference tasks, such as missing data imputation, or directly cannot tackle them. In this work, we propose a novel deep generative model, named VAMoH. VAMoH combines the capabilities of modeling continuous functions using INRs and the inference capabilities of Variational Autoencoders (VAEs). In addition, VAMoH relies on a normalizing flow to define the prior, and a mixture of hypernetworks to parametrize the data log-likelihood. This gives VAMoH a high expressive capability and interpretability. Through experiments on a diverse range of data types, such as images, voxels, and climate data, we show that VAMoH can effectively learn rich distributions over continuous functions. Furthermore, it can perform inference-related tasks, such as conditional super-resolution generation and in-painting, as well or better than previous approaches, while being less computationally demanding.
Sleep Activity Recognition and Characterization from Multi-Source Passively Sensed Data
Martínez-García, María, Moreno-Pino, Fernando, Olmos, Pablo M., Artés-Rodríguez, Antonio
Sleep constitutes a key indicator of human health, performance, and quality of life. Sleep deprivation has long been related to the onset, development, and worsening of several mental and metabolic disorders, constituting an essential marker for preventing, evaluating, and treating different health conditions. Sleep Activity Recognition methods can provide indicators to assess, monitor, and characterize subjects' sleep-wake cycles and detect behavioral changes. In this work, we propose a general method that continuously operates on passively sensed data from smartphones to characterize sleep and identify significant sleep episodes. Thanks to their ubiquity, these devices constitute an excellent alternative data source to profile subjects' biorhythms in a continuous, objective, and non-invasive manner, in contrast to traditional sleep assessment methods that usually rely on intrusive and subjective procedures. A Heterogeneous Hidden Markov Model is used to model a discrete latent variable process associated with the Sleep Activity Recognition task in a self-supervised way. We validate our results against sleep metrics reported by tested wearables, proving the effectiveness of the proposed approach and advocating its use to assess sleep without more reliable sources.
Detecting train driveshaft damages using accelerometer signals and Differential Convolutional Neural Networks
Galdo, Antía López, Guerrero-López, Alejandro, Olmos, Pablo M., García, María Jesús Gómez
Railway axle maintenance is critical to avoid catastrophic failures. Nowadays, condition monitoring techniques are becoming more prominent in the industry to prevent enormous costs and damage to human lives. This paper proposes the development of a railway axle condition monitoring system based on advanced 2D-Convolutional Neural Network (CNN) architectures applied to time-frequency representations of vibration signals. For this purpose, several preprocessing steps and different types of Deep Learning (DL) and Machine Learning (ML) architectures are discussed to design an accurate classification system. The resultant system converts the railway axle vibration signals into time-frequency domain representations, i.e., spectrograms, and, thus, trains a two-dimensional CNN to classify them depending on their cracks. The results showed that the proposed approach outperforms several alternative methods tested. The CNN architecture has been tested in 3 different wheelset assemblies, achieving AUC scores of 0.93, 0.86, and 0.75 outperforming any other architecture and showing a high level of reliability when classifying 4 different levels of defects.
Heterogeneous Hidden Markov Models for Sleep Activity Recognition from Multi-Source Passively Sensed Data
Moreno-Pino, Fernando, Martínez-García, María, Olmos, Pablo M., Artés-Rodríguez, Antonio
Psychiatric patients' passive activity monitoring is crucial to detect behavioural shifts in real-time, comprising a tool that helps clinicians supervise patients' evolution over time and enhance the associated treatments' outcomes. Frequently, sleep disturbances and mental health deterioration are closely related, as mental health condition worsening regularly entails shifts in the patients' circadian rhythms. Therefore, Sleep Activity Recognition constitutes a behavioural marker to portray patients' activity cycles and to detect behavioural changes among them. Moreover, mobile passively sensed data captured from smartphones, thanks to these devices' ubiquity, constitute an excellent alternative to profile patients' biorhythm. In this work, we aim to identify major sleep episodes based on passively sensed data. To do so, a Heterogeneous Hidden Markov Model is proposed to model a discrete latent variable process associated with the Sleep Activity Recognition task in a self-supervised way. We validate our results against sleep metrics reported by clinically tested wearables, proving the effectiveness of the proposed approach.
Multi-task longitudinal forecasting with missing values on Alzheimer's Disease
Sevilla-Salcedo, Carlos, Imani, Vandad, Olmos, Pablo M., Gómez-Verdejo, Vanessa, Tohka, Jussi
Machine learning techniques typically applied to dementia forecasting lack in their capabilities to jointly learn several tasks, handle time dependent heterogeneous data and missing values. In this paper, we propose a framework using the recently presented SSHIBA model for jointly learning different tasks on longitudinal data with missing values. The method uses Bayesian variational inference to impute missing values and combine information of several views. This way, we can combine different data-views from different time-points in a common latent space and learn the relations between each time-point while simultaneously modelling and predicting several output variables. We apply this model to predict together diagnosis, ventricle volume, and clinical scores in dementia. The results demonstrate that SSHIBA is capable of learning a good imputation of the missing values and outperforming the baselines while simultaneously predicting three different tasks.
PyHHMM: A Python Library for Heterogeneous Hidden Markov Models
Moreno-Pino, Fernando, Sükei, Emese, Olmos, Pablo M., Artés-Rodríguez, Antonio
We introduce PyHHMM, an object-oriented open-source Python implementation of Heterogeneous-Hidden Markov Models (HHMMs). In addition to HMM's basic core functionalities, such as different initialization algorithms and classical observations models, i.e., continuous and multinoulli, PyHHMM distinctively emphasizes features not supported in similar available frameworks: a heterogeneous observation model, missing data inference, different model order selection criterias, and semi-supervised training. These characteristics result in a feature-rich implementation for researchers working with sequential data. PyHHMM relies on the numpy, scipy, scikit-learn, and seaborn Python packages, and is distributed under the Apache-2.0 License. PyHHMM's source code is publicly available on Github (https://github.com/fmorenopino/HeterogeneousHMM) to facilitate adoptions and future contributions. A detailed documentation (https://pyhhmm.readthedocs.io/en/latest), which covers examples of use and models' theoretical explanation, is available. The package can be installed through the Python Package Index (PyPI), via 'pip install pyhhmm'.
Deep Autoregressive Models with Spectral Attention
Moreno-Pino, Fernando, Olmos, Pablo M., Artés-Rodríguez, Antonio
Time series forecasting is an important problem across many domains, playing a crucial role in multiple real-world applications. In this paper, we propose a forecasting architecture that combines deep autoregressive models with a Spectral Attention (SA) module, which merges global and local frequency domain information in the model's embedded space. By characterizing in the spectral domain the embedding of the time series as occurrences of a random process, our method can identify global trends and seasonality patterns. Two spectral attention models, global and local to the time series, integrate this information within the forecast and perform spectral filtering to remove time series's noise. The proposed architecture has a number of useful properties: it can be effectively incorporated into well-know forecast architectures, requiring a low number of parameters and producing interpretable results that improve forecasting accuracy. We test the Spectral Attention Autoregressive Model (SAAM) on several well-know forecast datasets, consistently demonstrating that our model compares favorably to state-of-the-art approaches.
Medical data wrangling with sequential variational autoencoders
Barrejón, Daniel, Olmos, Pablo M., Artés-Rodríguez, Antonio
Medical data sets are usually corrupted by noise and missing data. These missing patterns are commonly assumed to be completely random, but in medical scenarios, the reality is that these patterns occur in bursts due to sensors that are off for some time or data collected in a misaligned uneven fashion, among other causes. This paper proposes to model medical data records with heterogeneous data types and bursty missing data using sequential variational autoencoders (VAEs). In particular, we propose a new methodology, the Shi-VAE, which extends the capabilities of VAEs to sequential streams of data with missing observations. We compare our model against state-of-the-art solutions in an intensive care unit database (ICU) and a dataset of passive human monitoring. Furthermore, we find that standard error metrics such as RMSE are not conclusive enough to assess temporal models and include in our analysis the cross-correlation between the ground truth and the imputed signal. We show that Shi-VAE achieves the best performance in terms of using both metrics, with lower computational complexity than the GP-VAE model, which is the state-of-the-art method for medical records.
Unsupervised Learning of Global Factors in Deep Generative Models
Peis, Ignacio, Olmos, Pablo M., Artés-Rodríguez, Antonio
We present a novel deep generative model based on non i.i.d. variational autoencoders that captures global dependencies among observations in a fully unsupervised fashion. In contrast to the recent semi-supervised alternatives for global modeling in deep generative models, our approach combines a mixture model in the local or data-dependent space and a global Gaussian latent variable, which lead us to obtain three particular insights. First, the induced latent global space captures interpretable disentangled representations with no user-defined regularization in the evidence lower bound (as in $\beta$-VAE and its generalizations). Second, we show that the model performs domain alignment to find correlations and interpolate between different databases. Finally, we study the ability of the global space to discriminate between groups of observations with non-trivial underlying structures, such as face images with shared attributes or defined sequences of digits images.
Bayesian Sparse Factor Analysis with Kernelized Observations
Sevilla-Salcedo, Carlos, Guerrero-López, Alejandro, Olmos, Pablo M., Gómez-Verdejo, Vanessa
Latent variable models for multi-view learning attempt to find low-dimensional projections that fairly capture the correlations among multiple views that characterise each datum. High-dimensional views in medium-sized datasets and non-linear problems are traditionally handled by kernel methods, inducing a (non)-linear function between the latent projection and the data itself. However, they usually come with scalability issues and exposition to overfitting. To overcome these limitations, instead of imposing a kernel function, here we propose an alternative method. In particular, we combine probabilistic factor analysis with what we refer to as kernelized observations, in which the model focuses on reconstructing not the data itself, but its correlation with other data points measured by a kernel function. This model can combine several types of views (kernelized or not), can handle heterogeneous data and work in semi-supervised settings. Additionally, by including adequate priors, it can provide compact solutions for the kernelized observations (based in a automatic selection of bayesian support vectors) and can include feature selection capabilities. Using several public databases, we demonstrate the potential of our approach (and its extensions) w.r.t. common multi-view learning models such as kernel canonical correlation analysis or manifold relevance determination gaussian processes latent variable models.