Oates, Tim
Bringing UMAP Closer to the Speed of Light with GPU Acceleration
Nolet, Corey J., Lafargue, Victor, Raff, Edward, Nanditale, Thejaswi, Oates, Tim, Zedlewski, John, Patterson, Joshua
The Uniform Manifold Approximation and Projection (UMAP) algorithm has become widely popular for its ease of use, quality of results, and support for exploratory, unsupervised, supervised, and semi-supervised learning. While many algorithms can be ported to a GPU in a simple and direct fashion, such efforts have resulted in inefficent and inaccurate versions of UMAP. We show a number of techniques that can be used to make a faster and more faithful GPU version of UMAP, and obtain speedups of up to 100x in practice. Many of these design choices/lessons are general purpose and may inform the conversion of other graph and manifold learning algorithms to use GPUs. Our implementation has been made publicly available as part of the open source RAPIDS cuML library (https://github.com/rapidsai/cuml).
Universal Adversarial Perturbation for Text Classification
Gao, Hang, Oates, Tim
Given a state-of-the-art deep neural network text classifier, we show the existence of a universal and very small perturbation vector (in the embedding space) that causes natural text to be misclassified with high probability. Unlike images on which a single fixed-size adversarial perturbation can be found, text is of variable length, so we define the "universality" as "token-agnostic", where a single perturbation is applied to each token, resulting in different perturbations of flexible sizes at the sequence level. W e propose an algorithm to compute universal adversarial perturbations, and show that the state-of-the-art deep neural networks are highly vulnerable to them, even though they keep the neighborhood of tokens mostly preserved. W e also show how to use these adversarial perturbations to generate adversarial text samples. The surprising existence of universal "token-agnostic" adversarial perturbations may reveal important properties of a text classifier.
Using Neural Networks for Programming by Demonstration
Budhraja, Karan K., Gao, Hang, Oates, Tim
Agent-based modeling is a paradigm of modeling dynamic systems of interacting agents that are individually governed by specified behavioral rules. Training a model of such agents to produce an emergent behavior by specification of the emergent (as opposed to agent) behavior is easier from a demonstration perspective. Without the involvement of manual behavior specification via code or reliance on a defined taxonomy of possible behaviors, the demonstrator specifies the desired emergent behavior of the system over time, and retrieves agent-level parameters required to execute that motion. A low time-complexity and data requirement favoring framework for reproducing emergent behavior, given an abstract demonstration, is discussed in [1], [2]. The existing framework does, however, observe an inherent limitation in scalability because of an exponentially growing search space (with the number of agent-level parameters). Our work addresses this limitation by pursuing a more scalable architecture with the use of neural networks. While the (proof-of-concept) architecture is not suitable for many evaluated domains because of its lack of representational capacity for that domain, it is more suitable than existing work for larger datasets for the Civil Violence agent-based model.
Learning from Observations Using a Single Video Demonstration and Human Feedback
Gandhi, Sunil, Oates, Tim, Mohsenin, Tinoosh, Waytowich, Nicholas
In this paper, we present a method for learning from video demonstrations by using human feedback to construct a mapping between the standard representation of the agent and the visual representation of the demonstration. In this way, we leverage the advantages of both these representations, i.e., we learn the policy using standard state representations, but are able to specify the expected behavior using video demonstration. We train an autonomous agent using a single video demonstration and use human feedback (using numerical similarity rating) to map the standard representation to the visual representation with a neural network. We show the effectiveness of our method by teaching a hopper agent in the MuJoCo to perform a backflip using a single video demonstration generated in MuJoCo as well as from a real-world YouTube video of a person performing a backflip. Additionally, we show that our method can transfer to new tasks, such as hopping, with very little human feedback.
Graph Node Embeddings using Domain-Aware Biased Random Walks
Mukherjee, Sourav, Oates, Tim, Wright, Ryan
The recent proliferation of publicly available graph-structured data has sparked an interest in machine learning algorithms for graph data. Since most traditional machine learning algorithms assume data to be tabular, embedding algorithms for mapping graph data to real-valued vector spaces has become an active area of research. Existing graph embedding approaches are based purely on structural information and ignore any semantic information from the underlying domain. In this paper, we demonstrate that semantic information can play a useful role in computing graph embeddings. Specifically, we present a framework for devising embedding strategies aware of domain-specific interpretations of graph nodes and edges, and use knowledge of downstream machine learning tasks to identify relevant graph substructures. Using two real-life domains, we show that our framework yields embeddings that are simple to implement and yet achieve equal or greater accuracy in machine learning tasks compared to domain independent approaches.
Extending Signature-based Intrusion Detection Systems WithBayesian Abductive Reasoning
Ganesan, Ashwinkumar, Parameshwarappa, Pooja, Peshave, Akshay, Chen, Zhiyuan, Oates, Tim
Evolving cybersecurity threats are a persistent challenge for systemadministrators and security experts as new malwares are continu-ally released. Attackers may look for vulnerabilities in commercialproducts or execute sophisticated reconnaissance campaigns tounderstand a targets network and gather information on securityproducts like firewalls and intrusion detection / prevention systems(network or host-based). Many new attacks tend to be modificationsof existing ones. In such a scenario, rule-based systems fail to detectthe attack, even though there are minor differences in conditions /attributes between rules to identify the new and existing attack. Todetect these differences the IDS must be able to isolate the subset ofconditions that are true and predict the likely conditions (differentfrom the original) that must be observed. In this paper, we proposeaprobabilistic abductive reasoningapproach that augments an exist-ing rule-based IDS (snort [29]) to detect these evolved attacks by (a)Predicting rule conditions that are likely to occur (based on existingrules) and (b) able to generate new snort rules when provided withseed rule (i.e. a starting rule) to reduce the burden on experts toconstantly update them. We demonstrate the effectiveness of theapproach by generating new rules from the snort 2012 rules set andtesting it on the MACCDC 2012 dataset [6].
On the use of Deep Autoencoders for Efficient Embedded Reinforcement Learning
Prakash, Bharat, Horton, Mark, Waytowich, Nicholas R., Hairston, William David, Oates, Tim, Mohsenin, Tinoosh
In autonomous embedded systems, it is often vital to reduce the amount of actions taken in the real world and energy required to learn a policy. Training reinforcement learning agents from high dimensional image representations can be very expensive and time consuming. Autoencoders are deep neural network used to compress high dimensional data such as pixelated images into small latent representations. This compression model is vital to efficiently learn policies, especially when learning on embedded systems. We have implemented this model on the NVIDIA Jetson TX2 embedded GPU, and evaluated the power consumption, throughput, and energy consumption of the autoencoders for various CPU/GPU core combinations, frequencies, and model parameters. Additionally, we have shown the reconstructions generated by the autoencoder to analyze the quality of the generated compressed representation and also the performance of the reinforcement learning agent. Finally, we have presented an assessment of the viability of training these models on embedded systems and their usefulness in developing autonomous policies. Using autoencoders, we were able to achieve 4-5 $\times$ improved performance compared to a baseline RL agent with a convolutional feature extractor, while using less than 2W of power.
Adaptive Normalized Risk-Averting Training For Deep Neural Networks
Wang, Zhiguang, Oates, Tim, Lo, James
This paper proposes a set of new error criteria and learning approaches, Adaptive Normalized Risk-Averting Training (ANRAT), to attack the non-convex optimization problem in training deep neural networks (DNNs). Theoretically, we demonstrate its effectiveness on global and local convexity lower-bounded by the standard $L_p$-norm error. By analyzing the gradient on the convexity index $\lambda$, we explain the reason why to learn $\lambda$ adaptively using gradient descent works. In practice, we show how this method improves training of deep neural networks to solve visual recognition tasks on the MNIST and CIFAR-10 datasets. Without using pretraining or other tricks, we obtain results comparable or superior to those reported in recent literature on the same tasks using standard ConvNets + MSE/cross entropy. Performance on deep/shallow multilayer perceptrons and Denoised Auto-encoders is also explored. ANRAT can be combined with other quasi-Newton training methods, innovative network variants, regularization techniques and other specific tricks in DNNs. Other than unsupervised pretraining, it provides a new perspective to address the non-convex optimization problem in DNNs.
Adaptive Normalized Risk-Averting Training for Deep Neural Networks
Wang, Zhiguang (University of Maryland Baltimore County) | Oates, Tim (University of Maryland Baltimore County) | Lo, James (University of Maryland Baltimore County )
This paper proposes a set of new error criteria and a learning approach, called Adaptive Normalized Risk-Averting Training (ANRAT) to attack the non-convex optimization problem in training deep neural networks without pretraining. Theoretically, we demonstrate its effectiveness based on the expansion of the convexity region. By analyzing the gradient on the convexity index $\lambda$, we explain the reason why our learning method using gradient descent works. In practice, we show how this training method is successfully applied for improved training of deep neural networks to solve visual recognition tasks on the MNIST and CIFAR-10 datasets. Using simple experimental settings without pretraining and other tricks, we obtain results comparable or superior to those reported in recent literature on the same tasks using standard ConvNets + MSE/cross entropy. Performance on deep/shallow multilayer perceptron and Denoised Auto-encoder is also explored. ANRAT can be combined with other quasi-Newton training methods, innovative network variants, regularization techniques and other common tricks in DNNs. Other than unsupervised pretraining, it provides a new perspective to address the non-convex optimization strategy in training DNNs.
Imaging Time-Series to Improve Classification and Imputation
Wang, Zhiguang, Oates, Tim
Inspired by recent successes of deep learning in computer vision, we propose a novel framework for encoding time series as different types of images, namely, Gramian Angular Summation/Difference Fields (GASF/GADF) and Markov Transition Fields (MTF). This enables the use of techniques from computer vision for time series classification and imputation. We used Tiled Convolutional Neural Networks (tiled CNNs) on 20 standard datasets to learn high-level features from the individual and compound GASF-GADF-MTF images. Our approaches achieve highly competitive results when compared to nine of the current best time series classification approaches. Inspired by the bijection property of GASF on 0/1 rescaled data, we train Denoised Auto-encoders (DA) on the GASF images of four standard and one synthesized compound dataset. The imputation MSE on test data is reduced by 12.18%-48.02% when compared to using the raw data. An analysis of the features and weights learned via tiled CNNs and DAs explains why the approaches work.