Not enough data to create a plot.
Try a different view from the menu above.
Oala, Luis
AILuminate: Introducing v1.0 of the AI Risk and Reliability Benchmark from MLCommons
Ghosh, Shaona, Frase, Heather, Williams, Adina, Luger, Sarah, Röttger, Paul, Barez, Fazl, McGregor, Sean, Fricklas, Kenneth, Kumar, Mala, Feuillade--Montixi, Quentin, Bollacker, Kurt, Friedrich, Felix, Tsang, Ryan, Vidgen, Bertie, Parrish, Alicia, Knotz, Chris, Presani, Eleonora, Bennion, Jonathan, Boston, Marisa Ferrara, Kuniavsky, Mike, Hutiri, Wiebke, Ezick, James, Salem, Malek Ben, Sahay, Rajat, Goswami, Sujata, Gohar, Usman, Huang, Ben, Sarin, Supheakmungkol, Alhajjar, Elie, Chen, Canyu, Eng, Roman, Manjusha, Kashyap Ramanandula, Mehta, Virendra, Long, Eileen, Emani, Murali, Vidra, Natan, Rukundo, Benjamin, Shahbazi, Abolfazl, Chen, Kongtao, Ghosh, Rajat, Thangarasa, Vithursan, Peigné, Pierre, Singh, Abhinav, Bartolo, Max, Krishna, Satyapriya, Akhtar, Mubashara, Gold, Rafael, Coleman, Cody, Oala, Luis, Tashev, Vassil, Imperial, Joseph Marvin, Russ, Amy, Kunapuli, Sasidhar, Miailhe, Nicolas, Delaunay, Julien, Radharapu, Bhaktipriya, Shinde, Rajat, Tuesday, null, Dutta, Debojyoti, Grabb, Declan, Gangavarapu, Ananya, Sahay, Saurav, Gangavarapu, Agasthya, Schramowski, Patrick, Singam, Stephen, David, Tom, Han, Xudong, Mammen, Priyanka Mary, Prabhakar, Tarunima, Kovatchev, Venelin, Ahmed, Ahmed, Manyeki, Kelvin N., Madireddy, Sandeep, Khomh, Foutse, Zhdanov, Fedor, Baumann, Joachim, Vasan, Nina, Yang, Xianjun, Mougn, Carlos, Varghese, Jibin Rajan, Chinoy, Hussain, Jitendar, Seshakrishna, Maskey, Manil, Hardgrove, Claire V., Li, Tianhao, Gupta, Aakash, Joswin, Emil, Mai, Yifan, Kumar, Shachi H, Patlak, Cigdem, Lu, Kevin, Alessi, Vincent, Balija, Sree Bhargavi, Gu, Chenhe, Sullivan, Robert, Gealy, James, Lavrisa, Matt, Goel, James, Mattson, Peter, Liang, Percy, Vanschoren, Joaquin
The rapid advancement and deployment of AI systems have created an urgent need for standard safety-evaluation frameworks. This paper introduces AILuminate v1.0, the first comprehensive industry-standard benchmark for assessing AI-product risk and reliability. Its development employed an open process that included participants from multiple fields. The benchmark evaluates an AI system's resistance to prompts designed to elicit dangerous, illegal, or undesirable behavior in 12 hazard categories, including violent crimes, nonviolent crimes, sex-related crimes, child sexual exploitation, indiscriminate weapons, suicide and self-harm, intellectual property, privacy, defamation, hate, sexual content, and specialized advice (election, financial, health, legal). Our method incorporates a complete assessment standard, extensive prompt datasets, a novel evaluation framework, a grading and reporting system, and the technical as well as organizational infrastructure for long-term support and evolution. In particular, the benchmark employs an understandable five-tier grading scale (Poor to Excellent) and incorporates an innovative entropy-based system-response evaluation. In addition to unveiling the benchmark, this report also identifies limitations of our method and of building safety benchmarks generally, including evaluator uncertainty and the constraints of single-turn interactions. This work represents a crucial step toward establishing global standards for AI risk and reliability evaluation while acknowledging the need for continued development in areas such as multiturn interactions, multimodal understanding, coverage of additional languages, and emerging hazard categories. Our findings provide valuable insights for model developers, system integrators, and policymakers working to promote safer AI deployment.
Croissant: A Metadata Format for ML-Ready Datasets
Akhtar, Mubashara, Benjelloun, Omar, Conforti, Costanza, Gijsbers, Pieter, Giner-Miguelez, Joan, Jain, Nitisha, Kuchnik, Michael, Lhoest, Quentin, Marcenac, Pierre, Maskey, Manil, Mattson, Peter, Oala, Luis, Ruyssen, Pierre, Shinde, Rajat, Simperl, Elena, Thomas, Goeffry, Tykhonov, Slava, Vanschoren, Joaquin, van der Velde, Jos, Vogler, Steffen, Wu, Carole-Jean
Data is a critical resource for Machine Learning (ML), yet working with data remains a key friction point. This paper introduces Croissant, a metadata format for datasets that simplifies how data is used by ML tools and frameworks. Croissant makes datasets more discoverable, portable and interoperable, thereby addressing significant challenges in ML data management and responsible AI. Croissant is already supported by several popular dataset repositories, spanning hundreds of thousands of datasets, ready to be loaded into the most popular ML frameworks.
Introducing v0.5 of the AI Safety Benchmark from MLCommons
Vidgen, Bertie, Agrawal, Adarsh, Ahmed, Ahmed M., Akinwande, Victor, Al-Nuaimi, Namir, Alfaraj, Najla, Alhajjar, Elie, Aroyo, Lora, Bavalatti, Trupti, Bartolo, Max, Blili-Hamelin, Borhane, Bollacker, Kurt, Bomassani, Rishi, Boston, Marisa Ferrara, Campos, Siméon, Chakra, Kal, Chen, Canyu, Coleman, Cody, Coudert, Zacharie Delpierre, Derczynski, Leon, Dutta, Debojyoti, Eisenberg, Ian, Ezick, James, Frase, Heather, Fuller, Brian, Gandikota, Ram, Gangavarapu, Agasthya, Gangavarapu, Ananya, Gealy, James, Ghosh, Rajat, Goel, James, Gohar, Usman, Goswami, Sujata, Hale, Scott A., Hutiri, Wiebke, Imperial, Joseph Marvin, Jandial, Surgan, Judd, Nick, Juefei-Xu, Felix, Khomh, Foutse, Kailkhura, Bhavya, Kirk, Hannah Rose, Klyman, Kevin, Knotz, Chris, Kuchnik, Michael, Kumar, Shachi H., Kumar, Srijan, Lengerich, Chris, Li, Bo, Liao, Zeyi, Long, Eileen Peters, Lu, Victor, Luger, Sarah, Mai, Yifan, Mammen, Priyanka Mary, Manyeki, Kelvin, McGregor, Sean, Mehta, Virendra, Mohammed, Shafee, Moss, Emanuel, Nachman, Lama, Naganna, Dinesh Jinenhally, Nikanjam, Amin, Nushi, Besmira, Oala, Luis, Orr, Iftach, Parrish, Alicia, Patlak, Cigdem, Pietri, William, Poursabzi-Sangdeh, Forough, Presani, Eleonora, Puletti, Fabrizio, Röttger, Paul, Sahay, Saurav, Santos, Tim, Scherrer, Nino, Sebag, Alice Schoenauer, Schramowski, Patrick, Shahbazi, Abolfazl, Sharma, Vin, Shen, Xudong, Sistla, Vamsi, Tang, Leonard, Testuggine, Davide, Thangarasa, Vithursan, Watkins, Elizabeth Anne, Weiss, Rebecca, Welty, Chris, Wilbers, Tyler, Williams, Adina, Wu, Carole-Jean, Yadav, Poonam, Yang, Xianjun, Zeng, Yi, Zhang, Wenhui, Zhdanov, Fedor, Zhu, Jiacheng, Liang, Percy, Mattson, Peter, Vanschoren, Joaquin
This paper introduces v0.5 of the AI Safety Benchmark, which has been created by the MLCommons AI Safety Working Group. The AI Safety Benchmark has been designed to assess the safety risks of AI systems that use chat-tuned language models. We introduce a principled approach to specifying and constructing the benchmark, which for v0.5 covers only a single use case (an adult chatting to a general-purpose assistant in English), and a limited set of personas (i.e., typical users, malicious users, and vulnerable users). We created a new taxonomy of 13 hazard categories, of which 7 have tests in the v0.5 benchmark. We plan to release version 1.0 of the AI Safety Benchmark by the end of 2024. The v1.0 benchmark will provide meaningful insights into the safety of AI systems. However, the v0.5 benchmark should not be used to assess the safety of AI systems. We have sought to fully document the limitations, flaws, and challenges of v0.5. This release of v0.5 of the AI Safety Benchmark includes (1) a principled approach to specifying and constructing the benchmark, which comprises use cases, types of systems under test (SUTs), language and context, personas, tests, and test items; (2) a taxonomy of 13 hazard categories with definitions and subcategories; (3) tests for seven of the hazard categories, each comprising a unique set of test items, i.e., prompts. There are 43,090 test items in total, which we created with templates; (4) a grading system for AI systems against the benchmark; (5) an openly available platform, and downloadable tool, called ModelBench that can be used to evaluate the safety of AI systems on the benchmark; (6) an example evaluation report which benchmarks the performance of over a dozen openly available chat-tuned language models; (7) a test specification for the benchmark.
DMLR: Data-centric Machine Learning Research -- Past, Present and Future
Oala, Luis, Maskey, Manil, Bat-Leah, Lilith, Parrish, Alicia, Gürel, Nezihe Merve, Kuo, Tzu-Sheng, Liu, Yang, Dror, Rotem, Brajovic, Danilo, Yao, Xiaozhe, Bartolo, Max, Rojas, William A Gaviria, Hileman, Ryan, Aliment, Rainier, Mahoney, Michael W., Risdal, Meg, Lease, Matthew, Samek, Wojciech, Dutta, Debojyoti, Northcutt, Curtis G, Coleman, Cody, Hancock, Braden, Koch, Bernard, Tadesse, Girmaw Abebe, Karlaš, Bojan, Alaa, Ahmed, Dieng, Adji Bousso, Noy, Natasha, Reddi, Vijay Janapa, Zou, James, Paritosh, Praveen, van der Schaar, Mihaela, Bollacker, Kurt, Aroyo, Lora, Zhang, Ce, Vanschoren, Joaquin, Guyon, Isabelle, Mattson, Peter
Drawing from discussions at the inaugural DMLR workshop at ICML 2023 and meetings prior, in this report we outline the relevance of community engagement and infrastructure development for the creation of next-generation public datasets that will advance machine learning science. We chart a path forward as a collective effort to sustain the creation and maintenance of these datasets and methods towards positive scientific, societal and business impact.
Generative Fractional Diffusion Models
Nobis, Gabriel, Aversa, Marco, Springenberg, Maximilian, Detzel, Michael, Ermon, Stefano, Nakajima, Shinichi, Murray-Smith, Roderick, Lapuschkin, Sebastian, Knochenhauer, Christoph, Oala, Luis, Samek, Wojciech
We generalize the continuous time framework for score-based generative models from an underlying Brownian motion (BM) to an approximation of fractional Brownian motion (FBM). We derive a continuous reparameterization trick and the reverse time model by representing FBM as a stochastic integral over a family of Ornstein-Uhlenbeck processes to define generative fractional diffusion models (GFDM) with driving noise converging to a non-Markovian process of infinite quadratic variation. The Hurst index $H\in(0,1)$ of FBM enables control of the roughness of the distribution transforming path. To the best of our knowledge, this is the first attempt to build a generative model upon a stochastic process with infinite quadratic variation.
DiffInfinite: Large Mask-Image Synthesis via Parallel Random Patch Diffusion in Histopathology
Aversa, Marco, Nobis, Gabriel, Hägele, Miriam, Standvoss, Kai, Chirica, Mihaela, Murray-Smith, Roderick, Alaa, Ahmed, Ruff, Lukas, Ivanova, Daniela, Samek, Wojciech, Klauschen, Frederick, Sanguinetti, Bruno, Oala, Luis
We present DiffInfinite, a hierarchical diffusion model that generates arbitrarily large histological images while preserving long-range correlation structural information. Our approach first generates synthetic segmentation masks, subsequently used as conditions for the high-fidelity generative diffusion process. The proposed sampling method can be scaled up to any desired image size while only requiring small patches for fast training. Moreover, it can be parallelized more efficiently than previous large-content generation methods while avoiding tiling artifacts. The training leverages classifier-free guidance to augment a small, sparsely annotated dataset with unlabelled data. Our method alleviates unique challenges in histopathological imaging practice: large-scale information, costly manual annotation, and protective data handling. The biological plausibility of DiffInfinite data is evaluated in a survey by ten experienced pathologists as well as a downstream classification and segmentation task. Samples from the model score strongly on anti-copying metrics which is relevant for the protection of patient data.
Localized Data Work as a Precondition for Data-Centric ML: A Case Study of Full Lifecycle Crop Disease Identification in Ghana
Akogo, Darlington, Samori, Issah, Akafia, Cyril, Fiagbor, Harriet, Kangah, Andrews, Asiedu, Donald Kwame, Fuachie, Kwabena, Oala, Luis
The Ghana Cashew Disease Identification with Artificial Intelligence (CADI AI) project demonstrates the importance of sound data work as a precondition for the delivery of useful, localized datacentric solutions for public good tasks such as agricultural productivity and food security. Dronecollected data and machine learning are utilized to determine crop stressors. Data, model and the final app are developed jointly and made available to local farmers via a desktop application. Cashew is a significant cash crop in Ghana (Rabany et al., 2015), with small and medium farmers relying on it for income. Cashew cultivation is concentrated in specific regions of Ghana. However, farmers face challenges including insect, plant disease and abiotic stress factors that reduce their Figure 1: A visual summary of the application lifecycle: yields (ICAR; Jayaprakash et al., 2023; Mensah et al., 2023; data work (data collection with farmers, data annotation Timothy et al., 2021). To address these issues, the Cashew and labelling), model work (model training and fine-tuning), Disease Identification With Artificial Intelligence (CADI and UI application (software deployment and release to AI) project was launched to provide a data-centric solution.
Data Models for Dataset Drift Controls in Machine Learning With Optical Images
Oala, Luis, Aversa, Marco, Nobis, Gabriel, Willis, Kurt, Neuenschwander, Yoan, Buck, Michèle, Matek, Christian, Extermann, Jerome, Pomarico, Enrico, Samek, Wojciech, Murray-Smith, Roderick, Clausen, Christoph, Sanguinetti, Bruno
Camera images are ubiquitous in machine learning research. They also play a central role in the delivery of important services spanning medicine and environmental surveying. However, the application of machine learning models in these domains has been limited because of robustness concerns. A primary failure mode are performance drops due to differences between the training and deployment data. While there are methods to prospectively validate the robustness of machine learning models to such dataset drifts, existing approaches do not account for explicit models of the primary object of interest: the data. This limits our ability to study and understand the relationship between data generation and downstream machine learning model performance in a physically accurate manner. In this study, we demonstrate how to overcome this limitation by pairing traditional machine learning with physical optics to obtain explicit and differentiable data models. We demonstrate how such data models can be constructed for image data and used to control downstream machine learning model performance related to dataset drift. The findings are distilled into three applications. First, drift synthesis enables the controlled generation of physically faithful drift test cases to power model selection and targeted generalization. Second, the gradient connection between machine learning task model and data model allows advanced, precise tolerancing of task model sensitivity to changes in the data generation. These drift forensics can be used to precisely specify the acceptable data environments in which a task model may be run. Third, drift optimization opens up the possibility to create drifts that can help the task model learn better faster, effectively optimizing the data generating process itself. A guide to access the open code and datasets is available at https://github.com/aiaudit-org/raw2logit.
Machine Learning for Health symposium 2022 -- Extended Abstract track
Parziale, Antonio, Agrawal, Monica, Joshi, Shalmali, Chen, Irene Y., Tang, Shengpu, Oala, Luis, Subbaswamy, Adarsh
A collection of the extended abstracts that were presented at the 2nd Machine Learning for Health symposium (ML4H 2022), which was held both virtually and in person on November 28, 2022, in New Orleans, Louisiana, USA. Machine Learning for Health (ML4H) is a longstanding venue for research into machine learning for health, including both theoretical works and applied works. ML4H 2022 featured two submission tracks: a proceedings track, which encompassed full-length submissions of technically mature and rigorous work, and an extended abstract track, which would accept less mature, but innovative research for discussion. All the manuscripts submitted to ML4H Symposium underwent a double-blind peer-review process. Extended abstracts included in this collection describe innovative machine learning research focused on relevant problems in health and biomedicine.
More Than Meets The Eye: Semi-supervised Learning Under Non-IID Data
Calderon-Ramirez, Saul, Oala, Luis
A common heuristic in semi-supervised deep learning (SSDL) is to select unlabelled data based on a notion of semantic similarity to the labelled data. For example, labelled images of numbers should be paired with unlabelled images of numbers instead of, say, unlabelled images of cars. We refer to this practice as semantic data set matching. In this work, we demonstrate the limits of semantic data set matching. We show that it can sometimes even degrade the performance for a state of the art SSDL algorithm. We present and make available a comprehensive simulation sandbox, called non-IID-SSDL, for stress testing an SSDL algorithm under different degrees of distribution mismatch between the labelled and unlabelled data sets. In addition, we demonstrate that simple density based dissimilarity measures in the feature space of a generic classifier offer a promising and more reliable quantitative matching criterion to select unlabelled data before SSDL training.