Nowlan, Steven J.
Adaptive Soft Weight Tying using Gaussian Mixtures
Nowlan, Steven J., Hinton, Geoffrey E.
Evaluation of Adaptive Mixtures of Competing Experts
Nowlan, Steven J., Hinton, Geoffrey E.
We compare the performance of the modular architecture, composed of competing expert networks, suggested by Jacobs, Jordan, Nowlan and Hinton (1991) to the performance of a single back-propagation network on a complex, but low-dimensional, vowel recognition task. Simulations reveal that this system is capable of uncovering interesting decompositions in a complex task. The type of decomposition is strongly influenced by the nature of the input to the gating network that decides which expert to use for each case. The modular architecture also exhibits consistently better generalization on many variations of the task. 1 Introduction If back-propagation is used to train a single, multilayer network to perform different subtasks on different occasions, there will generally be strong interference effects which lead to slow learning and poor generalization. If we know in advance that a set of training cases may be naturally divideJ into subsets that correspond to distinct subtasks, interference can be reduced by using a system (see Figure 1) composed of several different "expert" networks plus a gating network that decides which of the experts should be used for each training case. Systems of this type have been suggested by a number of authors (Hampshire and Waibel, 1989; Jacobs, Jordan and Barto, 1990; Jacobs et al., 1991) (see also the paper by Jacobs and Jordan in this volume (1991».
Evaluation of Adaptive Mixtures of Competing Experts
Nowlan, Steven J., Hinton, Geoffrey E.
We compare the performance of the modular architecture, composed of competing expert networks, suggested by Jacobs, Jordan, Nowlan and Hinton (1991) to the performance of a single back-propagation network on a complex, but low-dimensional, vowel recognition task. Simulations reveal that this system is capable of uncovering interesting decompositions in a complex task. The type of decomposition is strongly influenced by the nature of the input to the gating network that decides which expert to use for each case. The modular architecture also exhibits consistently better generalization on many variations of the task.
Evaluation of Adaptive Mixtures of Competing Experts
Nowlan, Steven J., Hinton, Geoffrey E.
We compare the performance of the modular architecture, composed of competing expert networks, suggested by Jacobs, Jordan, Nowlan and Hinton (1991) to the performance of a single back-propagation network on a complex, but low-dimensional, vowel recognition task. Simulations reveal that this system is capable of uncovering interesting decompositions in a complex task. The type of decomposition is strongly influenced by the nature of the input to the gating network that decides which expert to use for each case. The modular architecture also exhibits consistently better generalization on many variations of the task.
Maximum Likelihood Competitive Learning
Nowlan, Steven J.
One popular class of unsupervised algorithms are competitive algorithms. Inthe traditional view of competition, only one competitor, the winner, adapts for any given case. I propose to view competitive adaptationas attempting to fit a blend of simple probability generators (such as gaussians) to a set of data-points. The maximum likelihoodfit of a model of this type suggests a "softer" form of competition, in which all competitors adapt in proportion to the relative probability that the input came from each competitor. I investigate one application of the soft competitive model, placement ofradial basis function centers for function interpolation, and show that the soft model can give better performance with little additional computational cost. 1 INTRODUCTION Interest in unsupervised learning has increased recently due to the application of more sophisticated mathematical tools (Linsker, 1988; Plumbley and Fallside, 1988; Sanger, 1989) and the success of several elegant simulations of large scale selforganization (Linsker,1986; Kohonen, 1982). One popular class of unsupervised algorithms are competitive algorithms, which have appeared as components in a variety of systems (Von der Malsburg, 1973; Fukushima, 1975; Grossberg, 1978). Generalizing the definition of Rumelhart and Zipser (1986), a competitive adaptive system consists of a collection of modules which are structurally identical except, possibly, for random initial parameter variation.
Maximum Likelihood Competitive Learning
Nowlan, Steven J.
One popular class of unsupervised algorithms are competitive algorithms. In the traditional view of competition, only one competitor, the winner, adapts for any given case. I propose to view competitive adaptation as attempting to fit a blend of simple probability generators (such as gaussians) to a set of data-points. The maximum likelihood fit of a model of this type suggests a "softer" form of competition, in which all competitors adapt in proportion to the relative probability that the input came from each competitor. I investigate one application of the soft competitive model, placement of radial basis function centers for function interpolation, and show that the soft model can give better performance with little additional computational cost. 1 INTRODUCTION Interest in unsupervised learning has increased recently due to the application of more sophisticated mathematical tools (Linsker, 1988; Plumbley and Fallside, 1988; Sanger, 1989) and the success of several elegant simulations of large scale selforganization (Linsker, 1986; Kohonen, 1982). One popular class of unsupervised algorithms are competitive algorithms, which have appeared as components in a variety of systems (Von der Malsburg, 1973; Fukushima, 1975; Grossberg, 1978). Generalizing the definition of Rumelhart and Zipser (1986), a competitive adaptive system consists of a collection of modules which are structurally identical except, possibly, for random initial parameter variation.