Goto

Collaborating Authors

 Ning, Zhiyuan


Adaptive Path-Memory Network for Temporal Knowledge Graph Reasoning

arXiv.org Artificial Intelligence

Temporal knowledge graph (TKG) reasoning aims to predict the future missing facts based on historical information and has gained increasing research interest recently. Lots of works have been made to model the historical structural and temporal characteristics for the reasoning task. Most existing works model the graph structure mainly depending on entity representation. However, the magnitude of TKG entities in real-world scenarios is considerable, and an increasing number of new entities will arise as time goes on. Therefore, we propose a novel architecture modeling with relation feature of TKG, namely aDAptivE path-MemOry Network (DaeMon), which adaptively models the temporal path information between query subject and each object candidate across history time. It models the historical information without depending on entity representation. Specifically, DaeMon uses path memory to record the temporal path information derived from path aggregation unit across timeline considering the memory passing strategy between adjacent timestamps. Extensive experiments conducted on four real-world TKG datasets demonstrate that our proposed model obtains substantial performance improvement and outperforms the state-of-the-art up to 4.8% absolute in MRR.


NEEDED: Introducing Hierarchical Transformer to Eye Diseases Diagnosis

arXiv.org Artificial Intelligence

With the development of natural language processing techniques(NLP), automatic diagnosis of eye diseases using ophthalmology electronic medical records (OEMR) has become possible. It aims to evaluate the condition of both eyes of a patient respectively, and we formulate it as a particular multi-label classification task in this paper. Although there are a few related studies in other diseases, automatic diagnosis of eye diseases exhibits unique characteristics. First, descriptions of both eyes are mixed up in OEMR documents, with both free text and templated asymptomatic descriptions, resulting in sparsity and clutter of information. Second, OEMR documents contain multiple parts of descriptions and have long document lengths. Third, it is critical to provide explainability to the disease diagnosis model. To overcome those challenges, we present an effective automatic eye disease diagnosis framework, NEEDED. In this framework, a preprocessing module is integrated to improve the density and quality of information. Then, we design a hierarchical transformer structure for learning the contextualized representations of each sentence in the OEMR document. For the diagnosis part, we propose an attention-based predictor that enables traceable diagnosis by obtaining disease-specific information. Experiments on the real dataset and comparison with several baseline models show the advantage and explainability of our framework.


LightCAKE: A Lightweight Framework for Context-Aware Knowledge Graph Embedding

arXiv.org Artificial Intelligence

Knowledge graph embedding (KGE) models learn to project symbolic entities and relations into a continuous vector space based on the observed triplets. However, existing KGE models cannot make a proper trade-off between the graph context and the model complexity, which makes them still far from satisfactory. In this paper, we propose a lightweight framework named LightCAKE for context-aware KGE. LightCAKE explicitly models the graph context without introducing redundant trainable parameters, and uses an iterative aggregation strategy to integrate the context information into the entity/relation embeddings. As a generic framework, it can be used with many simple KGE models to achieve excellent results. Finally, extensive experiments on public benchmarks demonstrate the efficiency and effectiveness of our framework.


Context-Enhanced Entity and Relation Embedding for Knowledge Graph Completion

arXiv.org Artificial Intelligence

Most researches for knowledge graph completion learn representations of entities and relations to predict missing links in incomplete knowledge graphs. However, these methods fail to take full advantage of both the contextual information of entity and relation. Here, we extract contexts of entities and relations from the triplets which they compose. We propose a model named AggrE, which conducts efficient aggregations respectively on entity context and relation context in multi-hops, and learns context-enhanced entity and relation embeddings for knowledge graph completion. The experiment results show that AggrE is competitive to existing models.