Ning, Xia
Molecule Optimization via Fragment-based Generative Models
Chen, Ziqi, Min, Martin Renqiang, Parthasarathy, Srinivasan, Ning, Xia
In drug discovery, molecule optimization is an important step in order to modify drug candidates into better ones in terms of desired drug properties. With the recent advance of Artificial Intelligence, this traditionally in vitro process has been increasingly facilitated by in silico approaches. We present an innovative in silico approach to computationally optimizing molecules and formulate the problem as to generate optimized molecular graphs via deep generative models. Our generative models follow the key idea of fragment-based drug design, and optimize molecules by modifying their small fragments. Our models learn how to identify the to-be-optimized fragments and how to modify such fragments by learning from the difference of molecules that have good and bad properties. In optimizing a new molecule, our models apply the learned signals to decode optimized fragments at the predicted location of the fragments. We also construct multiple such models into a pipeline such that each of the models in the pipeline is able to optimize one fragment, and thus the entire pipeline is able to modify multiple fragments of molecule if needed. We compare our models with other state-of-the-art methods on benchmark datasets and demonstrate that our methods significantly outperform others with more than 80% property improvement under moderate molecular similarity constraints, and more than 10% property improvement under high molecular similarity constraints.
Ranking-based Convolutional Neural Network Models for Peptide-MHC Binding Prediction
Chen, Ziqi, Min, Martin Renqiang, Ning, Xia
T-cell receptors can recognize foreign peptides bound to major histocompatibility complex (MHC) class-I proteins, and thus trigger the adaptive immune response. Therefore, identifying peptides that can bind to MHC class-I molecules plays a vital role in the design of peptide vaccines. Many computational methods, for example, the state-of-the-art allele-specific method MHCflurry, have been developed to predict the binding affinities between peptides and MHC molecules. In this manuscript, we develop two allele-specific Convolutional Neural Network (CNN)-based methods named ConvM and SpConvM to tackle the binding prediction problem. Specifically, we formulate the problem as to optimize the rankings of peptide-MHC bindings via ranking-based learning objectives. Such optimization is more robust and tolerant to the measurement inaccuracy of binding affinities, and therefore enables more accurate prioritization of binding peptides. In addition, we develop a new position encoding method in ConvM and SpConvM to better identify the most important amino acids for the binding events. Our experimental results demonstrate that our models significantly outperform the state-of-the-art methods including MHCflurry with an average percentage improvement of 6.70% on AUC and 17.10% on ROC5 across 128 alleles.
Drug-drug interaction prediction based on co-medication patterns and graph matching
Chiang, Wen-Hao, Shen, Li, Li, Lang, Ning, Xia
Background: The problem of predicting whether a drug combination of arbitrary orders is likely to induce adverse drug reactions is considered in this manuscript. Methods: Novel kernels over drug combinations of arbitrary orders are developed within support vector machines for the prediction. Graph matching methods are used in the novel kernels to measure the similarities among drug combinations, in which drug co-medication patterns are leveraged to measure single drug similarities. Results: The experimental results on a real-world dataset demonstrated that the new kernels achieve an area under the curve (AUC) value 0.912 for the prediction problem. Conclusions: The new methods with drug co-medication based single drug similarities can accurately predict whether a drug combination is likely to induce adverse drug reactions of interest. Keywords: drug-drug interaction prediction; drug combination similarity; co-medication; graph matching
Drug Selection via Joint Push and Learning to Rank
He, Yicheng, Liu, Junfeng, Cheng, Lijun, Ning, Xia
Selecting the right drugs for the right patients is a primary goal of precision medicine. In this manuscript, we consider the problem of cancer drug selection in a learning-to-rank framework. We have formulated the cancer drug selection problem as to accurately predicting 1). the ranking positions of sensitive drugs and 2). the ranking orders among sensitive drugs in cancer cell lines based on their responses to cancer drugs. We have developed a new learning-to-rank method, denoted as pLETORg , that predicts drug ranking structures in each cell line via using drug latent vectors and cell line latent vectors. The pLETORg method learns such latent vectors through explicitly enforcing that, in the drug ranking list of each cell line, the sensitive drugs are pushed above insensitive drugs, and meanwhile the ranking orders among sensitive drugs are correct. Genomics information on cell lines is leveraged in learning the latent vectors. Our experimental results on a benchmark cell line-drug response dataset demonstrate that the new pLETORg significantly outperforms the state-of-the-art method in prioritizing new sensitive drugs.