Goto

Collaborating Authors

 Nguyen, Dat Quoc


jLDADMM: A Java package for the LDA and DMM topic models

arXiv.org Machine Learning

In this technical report, we present jLDADMM---an easy-to-use Java toolkit for conventional topic models. jLDADMM is released to provide alternatives for topic modeling on normal or short texts. It provides implementations of the Latent Dirichlet Allocation topic model and the one-topic-per-document Dirichlet Multinomial Mixture model (i.e. mixture of unigrams), using collapsed Gibbs sampling. In addition, jLDADMM supplies a document clustering evaluation to compare topic models. jLDADMM is open-source and available to download at: https://github.com/datquocnguyen/jLDADMM


An overview of embedding models of entities and relationships for knowledge base completion

arXiv.org Artificial Intelligence

Knowledge bases (KBs) of real-world facts about entities and their relationships are useful resources for a variety of natural language processing tasks. However, because knowledge bases are typically incomplete, it is useful to be able to perform knowledge base completion or link prediction, i.e., predict whether a relationship not in the knowledge base is likely to be true. This article serves as a brief overview of embedding models of entities and relationships for knowledge base completion, summarizing up-to-date experimental results on standard benchmark datasets FB15k, WN18, FB15k-237, WN18RR, FB13 and WN11.


Neighborhood Mixture Model for Knowledge Base Completion

arXiv.org Artificial Intelligence

Knowledge bases are useful resources for many natural language processing tasks, however, they are far from complete. In this paper, we define a novel entity representation as a mixture of its neighborhood in the knowledge base and apply this technique on TransE-a well-known embedding model for knowledge base completion. Experimental results show that the neighborhood information significantly helps to improve the results of the TransE model, leading to better performance than obtained by other state-of-the-art embedding models on three benchmark datasets for triple classification, entity prediction and relation prediction tasks.


STransE: a novel embedding model of entities and relationships in knowledge bases

arXiv.org Artificial Intelligence

Knowledge bases of real-world facts about entities and their relationships are useful resources for a variety of natural language processing tasks. However, because knowledge bases are typically incomplete, it is useful to be able to perform link prediction or knowledge base completion, i.e., predict whether a relationship not in the knowledge base is likely to be true. This paper combines insights from several previous link prediction models into a new embedding model STransE that represents each entity as a low-dimensional vector, and each relation by two matrices and a translation vector. STransE is a simple combination of the SE and TransE models, but it obtains better link prediction performance on two benchmark datasets than previous embedding models. Thus, STransE can serve as a new baseline for the more complex models in the link prediction task.