Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
Nan Duan
PasteGAN: A Semi-Parametric Method to Generate Image from Scene Graph
Yikang LI, Tao Ma, Yeqi Bai, Nan Duan, Sining Wei, Xiaogang Wang
Despite some exciting progress on high-quality image generation from structured (scene graphs) or free-form (sentences) descriptions, most of them only guarantee the image-level semantical consistency, i.e. the generated image matching the semantic meaning of the description. They still lack the investigations on synthesizing the images in a more controllable way, like finely manipulating the visual appearance of every object. Therefore, to generate the images with preferred objects and rich interactions, we propose a semi-parametric method, PasteGAN, for generating the image from the scene graph and the image crops, where spatial arrangements of the objects and their pair-wise relationships are defined by the scene graph and the object appearances are determined by the given object crops. To enhance the interactions of the objects in the output, we design a Crop Refining Network and an Object-Image Fuser to embed the objects as well as their relationships into one map. Multiple losses work collaboratively to guarantee the generated images highly respecting the crops and complying with the scene graphs while maintaining excellent image quality. A crop selector is also proposed to pick the most-compatible crops from our external object tank by encoding the interactions around the objects in the scene graph if the crops are not provided. Evaluated on Visual Genome and COCO-Stuff dataset, our proposed method significantly outperforms the SOTA methods on Inception Score, Diversity Score and Fréchet Inception Distance. Extensive experiments also demonstrate our method's ability to generate complex and diverse images with given objects.
Dialog-to-Action: Conversational Question Answering Over a Large-Scale Knowledge Base
Daya Guo, Duyu Tang, Nan Duan, Ming Zhou, Jian Yin
We present an approach to map utterances in conversation to logical forms, which will be executed on a large-scale knowledge base. To handle enormous ellipsis phenomena in conversation, we introduce dialog memory management to manipulate historical entities, predicates, and logical forms when inferring the logical form of current utterances. Dialog memory management is embodied in a generative model, in which a logical form is interpreted in a top-down manner following a small and flexible grammar. We learn the model from denotations without explicit annotation of logical forms, and evaluate it on a large-scale dataset consisting of 200K dialogs over 12.8M entities. Results verify the benefits of modeling dialog memory, and show that our semantic parsing-based approach outperforms a memory network based encoder-decoder model by a huge margin.
Dialog-to-Action: Conversational Question Answering Over a Large-Scale Knowledge Base
Daya Guo, Duyu Tang, Nan Duan, Ming Zhou, Jian Yin
We present an approach to map utterances in conversation to logical forms, which will be executed on a large-scale knowledge base. To handle enormous ellipsis phenomena in conversation, we introduce dialog memory management to manipulate historical entities, predicates, and logical forms when inferring the logical form of current utterances. Dialog memory management is embodied in a generative model, in which a logical form is interpreted in a top-down manner following a small and flexible grammar. We learn the model from denotations without explicit annotation of logical forms, and evaluate it on a large-scale dataset consisting of 200K dialogs over 12.8M entities. Results verify the benefits of modeling dialog memory, and show that our semantic parsing-based approach outperforms a memory network based encoder-decoder model by a huge margin.
PasteGAN: A Semi-Parametric Method to Generate Image from Scene Graph
Yikang LI, Tao Ma, Yeqi Bai, Nan Duan, Sining Wei, Xiaogang Wang
Despite some exciting progress on high-quality image generation from structured (scene graphs) or free-form (sentences) descriptions, most of them only guarantee the image-level semantical consistency, i.e. the generated image matching the semantic meaning of the description. They still lack the investigations on synthesizing the images in a more controllable way, like finely manipulating the visual appearance of every object. Therefore, to generate the images with preferred objects and rich interactions, we propose a semi-parametric method, PasteGAN, for generating the image from the scene graph and the image crops, where spatial arrangements of the objects and their pair-wise relationships are defined by the scene graph and the object appearances are determined by the given object crops. To enhance the interactions of the objects in the output, we design a Crop Refining Network and an Object-Image Fuser to embed the objects as well as their relationships into one map. Multiple losses work collaboratively to guarantee the generated images highly respecting the crops and complying with the scene graphs while maintaining excellent image quality. A crop selector is also proposed to pick the most-compatible crops from our external object tank by encoding the interactions around the objects in the scene graph if the crops are not provided. Evaluated on Visual Genome and COCO-Stuff dataset, our proposed method significantly outperforms the SOTA methods on Inception Score, Diversity Score and Fréchet Inception Distance. Extensive experiments also demonstrate our method's ability to generate complex and diverse images with given objects.
A Tensorized Transformer for Language Modeling
Xindian Ma, Peng Zhang, Shuai Zhang, Nan Duan, Yuexian Hou, Ming Zhou, Dawei Song
Latest development of neural models has connected the encoder and decoder through a self-attention mechanism. In particular, Transformer, which is solely based on self-attention, has led to breakthroughs in Natural Language Processing (NLP) tasks. However, the multi-head attention mechanism, as a key component of Transformer, limits the effective deployment of the model to a resource-limited setting. In this paper, based on the ideas of tensor decomposition and parameters sharing, we propose a novel self-attention model (namely Multi-linear attention) with Block-Term Tensor Decomposition (BTD). We test and verify the proposed attention method on three language modeling tasks (i.e., PTB, WikiText-103 and Onebillion) and a neural machine translation task (i.e., WMT-2016 English-German). Multi-linear attention can not only largely compress the model parameters but also obtain performance improvements, compared with a number of language modeling approaches, such as Transformer, Transformer-XL, and Transformer with tensor train decomposition.