Not enough data to create a plot.
Try a different view from the menu above.
Muthukumar, Vidya
General Loss Functions Lead to (Approximate) Interpolation in High Dimensions
Lai, Kuo-Wei, Muthukumar, Vidya
We provide a unified framework, applicable to a general family of convex losses and across binary and multiclass settings in the overparameterized regime, to approximately characterize the implicit bias of gradient descent in closed form. Specifically, we show that the implicit bias is approximated (but not exactly equal to) the minimum-norm interpolation in high dimensions, which arises from training on the squared loss. In contrast to prior work which was tailored to exponentially-tailed losses and used the intermediate support-vector-machine formulation, our framework directly builds on the primal-dual analysis of Ji and Telgarsky (2021), allowing us to provide new approximate equivalences for general convex losses through a novel sensitivity analysis. Our framework also recovers existing exact equivalence results for exponentially-tailed losses across binary and multiclass settings. Finally, we provide evidence for the tightness of our techniques, which we use to demonstrate the effect of certain loss functions designed for out-of-distribution problems on the closed-form solution.
Estimating Optimal Policy Value in General Linear Contextual Bandits
Lee, Jonathan N., Kong, Weihao, Pacchiano, Aldo, Muthukumar, Vidya, Brunskill, Emma
In many bandit problems, the maximal reward achievable by a policy is often unknown in advance. We consider the problem of estimating the optimal policy value in the sublinear data regime before the optimal policy is even learnable. We refer to this as $V^*$ estimation. It was recently shown that fast $V^*$ estimation is possible but only in disjoint linear bandits with Gaussian covariates. Whether this is possible for more realistic context distributions has remained an open and important question for tasks such as model selection. In this paper, we first provide lower bounds showing that this general problem is hard. However, under stronger assumptions, we give an algorithm and analysis proving that $\widetilde{\mathcal{O}}(\sqrt{d})$ sublinear estimation of $V^*$ is indeed information-theoretically possible, where $d$ is the dimension. We then present a more practical, computationally efficient algorithm that estimates a problem-dependent upper bound on $V^*$ that holds for general distributions and is tight when the context distribution is Gaussian. We prove our algorithm requires only $\widetilde{\mathcal{O}}(\sqrt{d})$ samples to estimate the upper bound. We use this upper bound and the estimator to obtain novel and improved guarantees for several applications in bandit model selection and testing for treatment effects.
The good, the bad and the ugly sides of data augmentation: An implicit spectral regularization perspective
Lin, Chi-Heng, Kaushik, Chiraag, Dyer, Eva L., Muthukumar, Vidya
Data augmentation (DA) is a powerful workhorse for bolstering performance in modern machine learning. Specific augmentations like translations and scaling in computer vision are traditionally believed to improve generalization by generating new (artificial) data from the same distribution. However, this traditional viewpoint does not explain the success of prevalent augmentations in modern machine learning (e.g. randomized masking, cutout, mixup), that greatly alter the training data distribution. In this work, we develop a new theoretical framework to characterize the impact of a general class of DA on underparameterized and overparameterized linear model generalization. Our framework reveals that DA induces implicit spectral regularization through a combination of two distinct effects: a) manipulating the relative proportion of eigenvalues of the data covariance matrix in a training-data-dependent manner, and b) uniformly boosting the entire spectrum of the data covariance matrix through ridge regression. These effects, when applied to popular augmentations, give rise to a wide variety of phenomena, including discrepancies in generalization between over-parameterized and under-parameterized regimes and differences between regression and classification tasks. Our framework highlights the nuanced and sometimes surprising impacts of DA on generalization, and serves as a testbed for novel augmentation design.
Harmless interpolation in regression and classification with structured features
McRae, Andrew D., Karnik, Santhosh, Davenport, Mark A., Muthukumar, Vidya
Overparametrized neural networks tend to perfectly fit noisy training data yet generalize well on test data. Inspired by this empirical observation, recent work has sought to understand this phenomenon of benign overfitting or harmless interpolation in the much simpler linear model. Previous theoretical work critically assumes that either the data features are statistically independent or the input data is high-dimensional; this precludes general nonparametric settings with structured feature maps. In this paper, we present a general and flexible framework for upper bounding regression and classification risk in a reproducing kernel Hilbert space. A key contribution is that our framework describes precise sufficient conditions on the data Gram matrix under which harmless interpolation occurs. Our results recover prior independent-features results (with a much simpler analysis), but they furthermore show that harmless interpolation can occur in more general settings such as features that are a bounded orthonormal system. Furthermore, our results show an asymptotic separation between classification and regression performance in a manner that was previously only shown for Gaussian features.
Universal and data-adaptive algorithms for model selection in linear contextual bandits
Muthukumar, Vidya, Krishnamurthy, Akshay
Model selection in contextual bandits is an important complementary problem to regret minimization with respect to a fixed model class. We consider the simplest non-trivial instance of model-selection: distinguishing a simple multi-armed bandit problem from a linear contextual bandit problem. Even in this instance, current state-of-the-art methods explore in a suboptimal manner and require strong "feature-diversity" conditions. In this paper, we introduce new algorithms that a) explore in a data-adaptive manner, and b) provide model selection guarantees of the form $\mathcal{O}(d^{\alpha} T^{1- \alpha})$ with no feature diversity conditions whatsoever, where $d$ denotes the dimension of the linear model and $T$ denotes the total number of rounds. The first algorithm enjoys a "best-of-both-worlds" property, recovering two prior results that hold under distinct distributional assumptions, simultaneously. The second removes distributional assumptions altogether, expanding the scope for tractable model selection. Our approach extends to model selection among nested linear contextual bandits under some additional assumptions.
Classification and Adversarial examples in an Overparameterized Linear Model: A Signal Processing Perspective
Narang, Adhyyan, Muthukumar, Vidya, Sahai, Anant
State-of-the-art deep learning classifiers are heavily overparameterized with respect to the amount of training examples and observed to generalize well on "clean" data, but be highly susceptible to infinitesmal adversarial perturbations. In this paper, we identify an overparameterized linear ensemble, that uses the "lifted" Fourier feature map, that demonstrates both of these behaviors. The input is one-dimensional, and the adversary is only allowed to perturb these inputs and not the non-linear features directly. We find that the learned model is susceptible to adversaries in an intermediate regime where classification generalizes but regression does not. Notably, the susceptibility arises despite the absence of model mis-specification or label noise, which are commonly cited reasons for adversarial-susceptibility. These results are extended theoretically to a random-Fourier-sum setup that exhibits double-descent behavior. In both feature-setups, the adversarial vulnerability arises because of a phenomenon we term spatial localization: the predictions of the learned model are markedly more sensitive in the vicinity of training points than elsewhere. This sensitivity is a consequence of feature lifting and is reminiscent of Gibb's and Runge's phenomena from signal processing and functional analysis. Despite the adversarial susceptibility, we find that classification with these features can be easier than the more commonly studied "independent feature" models.
A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of Overparameterized Machine Learning
Dar, Yehuda, Muthukumar, Vidya, Baraniuk, Richard G.
The rapid recent progress in machine learning (ML) has raised a number of scientific questions that challenge the longstanding dogma of the field. One of the most important riddles is the good empirical generalization of overparameterized models. Overparameterized models are excessively complex with respect to the size of the training dataset, which results in them perfectly fitting (i.e., interpolating) the training data, which is usually noisy. Such interpolation of noisy data is traditionally associated with detrimental overfitting, and yet a wide range of interpolating models -- from simple linear models to deep neural networks -- have recently been observed to generalize extremely well on fresh test data. Indeed, the recently discovered double descent phenomenon has revealed that highly overparameterized models often improve over the best underparameterized model in test performance. Understanding learning in this overparameterized regime requires new theory and foundational empirical studies, even for the simplest case of the linear model. The underpinnings of this understanding have been laid in very recent analyses of overparameterized linear regression and related statistical learning tasks, which resulted in precise analytic characterizations of double descent. This paper provides a succinct overview of this emerging theory of overparameterized ML (henceforth abbreviated as TOPML) that explains these recent findings through a statistical signal processing perspective. We emphasize the unique aspects that define the TOPML research area as a subfield of modern ML theory and outline interesting open questions that remain.
Learning from an Exploring Demonstrator: Optimal Reward Estimation for Bandits
Guo, Wenshuo, Agrawal, Kumar Krishna, Grover, Aditya, Muthukumar, Vidya, Pananjady, Ashwin
We introduce the "inverse bandit" problem of estimating the rewards of a multi-armed bandit instance from observing the learning process of a low-regret demonstrator. Existing approaches to the related problem of inverse reinforcement learning assume the execution of an optimal policy, and thereby suffer from an identifiability issue. In contrast, our paradigm leverages the demonstrator's behavior en route to optimality, and in particular, the exploration phase, to obtain consistent reward estimates. We develop simple and efficient reward estimation procedures for demonstrations within a class of upper-confidence-based algorithms, showing that reward estimation gets progressively easier as the regret of the algorithm increases. We match these upper bounds with information-theoretic lower bounds that apply to any demonstrator algorithm, thereby characterizing the optimal tradeoff between exploration and reward estimation. Extensive empirical evaluations on both synthetic data and simulated experimental design data from the natural sciences corroborate our theoretical results.
Benign Overfitting in Multiclass Classification: All Roads Lead to Interpolation
Wang, Ke, Muthukumar, Vidya, Thrampoulidis, Christos
The growing literature on "benign overfitting" in overparameterized models has been mostly restricted to regression or binary classification settings; however, most success stories of modern machine learning have been recorded in multiclass settings. Motivated by this discrepancy, we study benign overfitting in multiclass linear classification. Specifically, we consider the following popular training algorithms on separable data: (i) empirical risk minimization (ERM) with cross-entropy loss, which converges to the multiclass support vector machine (SVM) solution; (ii) ERM with least-squares loss, which converges to the min-norm interpolating (MNI) solution; and, (iii) the one-vs-all SVM classifier. First, we provide a simple sufficient condition under which all three algorithms lead to classifiers that interpolate the training data and have equal accuracy. When the data is generated from Gaussian mixtures or a multinomial logistic model, this condition holds under high enough effective overparameterization. Second, we derive novel error bounds on the accuracy of the MNI classifier, thereby showing that all three training algorithms lead to benign overfitting under sufficient overparameterization. Ultimately, our analysis shows that good generalization is possible for SVM solutions beyond the realm in which typical margin-based bounds apply.
On the Impossibility of Convergence of Mixed Strategies with No Regret Learning
Muthukumar, Vidya, Phade, Soham, Sahai, Anant
We study convergence properties of the mixed strategies that result from a general class of optimal no regret learning strategies in a repeated game setting where the stage game is any 2 by 2 competitive game (i.e. game for which all the Nash equilibria (NE) of the game are completely mixed). We consider the class of strategies whose information set at each step is the empirical average of the opponent's realized play (and the step number), that we call mean based strategies. We first show that there does not exist any optimal no regret, mean based strategy for player 1 that would result in the convergence of her mixed strategies (in probability) against an opponent that plays his Nash equilibrium mixed strategy at each step. Next, we show that this last iterate divergence necessarily occurs if player 2 uses any adaptive strategy with a minimal randomness property. This property is satisfied, for example, by any fixed sequence of mixed strategies for player 2 that converges to NE. We conjecture that this property holds when both players use optimal no regret learning strategies against each other, leading to the divergence of the mixed strategies with a positive probability. Finally, we show that variants of mean based strategies using recency bias, which have yielded last iterate convergence in deterministic min max optimization, continue to lead to this last iterate divergence. This demonstrates a crucial difference in outcomes between using the opponent's mixtures and realizations to make strategy updates.