Muschalik, Maximilian
iPDP: On Partial Dependence Plots in Dynamic Modeling Scenarios
Muschalik, Maximilian, Fumagalli, Fabian, Jagtani, Rohit, Hammer, Barbara, Hüllermeier, Eyke
Post-hoc explanation techniques such as the well-established partial dependence plot (PDP), which investigates feature dependencies, are used in explainable artificial intelligence (XAI) to understand black-box machine learning models. While many real-world applications require dynamic models that constantly adapt over time and react to changes in the underlying distribution, XAI, so far, has primarily considered static learning environments, where models are trained in a batch mode and remain unchanged. We thus propose a novel model-agnostic XAI framework called incremental PDP (iPDP) that extends on the PDP to extract time-dependent feature effects in non-stationary learning environments. We formally analyze iPDP and show that it approximates a time-dependent variant of the PDP that properly reacts to real and virtual concept drift. The time-sensitivity of iPDP is controlled by a single smoothing parameter, which directly corresponds to the variance and the approximation error of iPDP in a static learning environment. We illustrate the efficacy of iPDP by showcasing an example application for drift detection and conducting multiple experiments on real-world and synthetic data sets and streams.
Incremental Permutation Feature Importance (iPFI): Towards Online Explanations on Data Streams
Fumagalli, Fabian, Muschalik, Maximilian, Hüllermeier, Eyke, Hammer, Barbara
Explainable Artificial Intelligence (XAI) has mainly focused on static learning scenarios so far. We are interested in dynamic scenarios where data is sampled progressively, and learning is done in an incremental rather than a batch mode. We seek efficient incremental algorithms for computing feature importance (FI) measures, specifically, an incremental FI measure based on feature marginalization of absent features similar to permutation feature importance (PFI). We propose an efficient, model-agnostic algorithm called iPFI to estimate this measure incrementally and under dynamic modeling conditions including concept drift. We prove theoretical guarantees on the approximation quality in terms of expectation and variance. To validate our theoretical findings and the efficacy of our approaches compared to traditional batch PFI, we conduct multiple experimental studies on benchmark data with and without concept drift.