Munos, Rémi
Learning to Search with MCTSnets
Guez, Arthur, Weber, Théophane, Antonoglou, Ioannis, Simonyan, Karen, Vinyals, Oriol, Wierstra, Daan, Munos, Rémi, Silver, David
Planning problems are among the most important and well-studied problems in artificial intelligence. They are most typically solved by tree search algorithms that simulate ahead into the future, evaluate future states, and back-up those evaluations to the root of a search tree. Among these algorithms, Monte-Carlo tree search (MCTS) is one of the most general, powerful and widely used. A typical implementation of MCTS uses cleverly designed rules, optimized to the particular characteristics of the domain. These rules control where the simulation traverses, what to evaluate in the states that are reached, and how to back-up those evaluations. In this paper we instead learn where, what and how to search. Our architecture, which we call an MCTSnet, incorporates simulation-based search inside a neural network, by expanding, evaluating and backing-up a vector embedding. The parameters of the network are trained end-to-end using gradient-based optimisation. When applied to small searches in the well known planning problem Sokoban, the learned search algorithm significantly outperformed MCTS baselines.
Distributional Reinforcement Learning With Quantile Regression
Dabney, Will (DeepMind) | Rowland, Mark (University of Cambridge) | Bellemare, Marc G. (Google Brain) | Munos, Rémi (DeepMind)
In reinforcement learning (RL), an agent interacts with the environment by taking actions and observing the next state and reward. When sampled probabilistically, these state transitions, rewards, and actions can all induce randomness in the observed long-term return. Traditionally, reinforcement learning algorithms average over this randomness to estimate the value function. In this paper, we build on recent work advocating a distributional approach to reinforcement learning in which the distribution over returns is modeled explicitly instead of only estimating the mean. That is, we examine methods of learning the value distribution instead of the value function. We give results that close a number of gaps between the theoretical and algorithmic results given by Bellemare, Dabney, and Munos (2017). First, we extend existing results to the approximate distribution setting. Second, we present a novel distributional reinforcement learning algorithm consistent with our theoretical formulation. Finally, we evaluate this new algorithm on the Atari 2600 games, observing that it significantly outperforms many of the recent improvements on DQN, including the related distributional algorithm C51.
Stochastic approximation for speeding up LSTD (and LSPI)
Prashanth, L. A., Korda, Nathaniel, Munos, Rémi
We propose a stochastic approximation (SA) based method with randomization of samples for policy evaluation using the least squares temporal difference (LSTD) algorithm. Our method results in an $O(d)$ improvement in complexity in comparison to regular LSTD, where $d$ is the dimension of the data. We provide convergence rate results for our proposed method, both in high probability and in expectation. Moreover, we also establish that using our scheme in place of LSTD does not impact the rate of convergence of the approximate value function to the true value function and hence a low-complexity LSPI variant that uses our SA based scheme has the same order of the performance bounds as that of regular LSPI. These rate results coupled with the low complexity of our method make it attractive for implementation in big data settings, where $d$ is large. Furthermore, we analyze a similar low-complexity alternative for least squares regression and provide finite-time bounds there. We demonstrate the practicality of our method for LSTD empirically by combining it with the LSPI algorithm in a traffic signal control application. We also conduct another set of experiments that combines the SA based low-complexity variant for least squares regression with the LinUCB algorithm for contextual bandits, using the large scale news recommendation dataset from Yahoo.
Distributional Reinforcement Learning with Quantile Regression
Dabney, Will, Rowland, Mark, Bellemare, Marc G., Munos, Rémi
In reinforcement learning an agent interacts with the environment by taking actions and observing the next state and reward. When sampled probabilistically, these state transitions, rewards, and actions can all induce randomness in the observed long-term return. Traditionally, reinforcement learning algorithms average over this randomness to estimate the value function. In this paper, we build on recent work advocating a distributional approach to reinforcement learning in which the distribution over returns is modeled explicitly instead of only estimating the mean. That is, we examine methods of learning the value distribution instead of the value function. We give results that close a number of gaps between the theoretical and algorithmic results given by Bellemare, Dabney, and Munos (2017). First, we extend existing results to the approximate distribution setting. Second, we present a novel distributional reinforcement learning algorithm consistent with our theoretical formulation. Finally, we evaluate this new algorithm on the Atari 2600 games, observing that it significantly outperforms many of the recent improvements on DQN, including the related distributional algorithm C51.
A Distributional Perspective on Reinforcement Learning
Bellemare, Marc G., Dabney, Will, Munos, Rémi
In this paper we argue for the fundamental importance of the value distribution: the distribution of the random return received by a reinforcement learning agent. This is in contrast to the common approach to reinforcement learning which models the expectation of this return, or value. Although there is an established body of literature studying the value distribution, thus far it has always been used for a specific purpose such as implementing risk-aware behaviour. We begin with theoretical results in both the policy evaluation and control settings, exposing a significant distributional instability in the latter. We then use the distributional perspective to design a new algorithm which applies Bellman's equation to the learning of approximate value distributions. We evaluate our algorithm using the suite of games from the Arcade Learning Environment. We obtain both state-of-the-art results and anecdotal evidence demonstrating the importance of the value distribution in approximate reinforcement learning. Finally, we combine theoretical and empirical evidence to highlight the ways in which the value distribution impacts learning in the approximate setting.
The Cramer Distance as a Solution to Biased Wasserstein Gradients
Bellemare, Marc G., Danihelka, Ivo, Dabney, Will, Mohamed, Shakir, Lakshminarayanan, Balaji, Hoyer, Stephan, Munos, Rémi
The Wasserstein probability metric has received much attention from the machine learning community. Unlike the Kullback-Leibler divergence, which strictly measures change in probability, the Wasserstein metric reflects the underlying geometry between outcomes. The value of being sensitive to this geometry has been demonstrated, among others, in ordinal regression and generative modelling. In this paper we describe three natural properties of probability divergences that reflect requirements from machine learning: sum invariance, scale sensitivity, and unbiased sample gradients. The Wasserstein metric possesses the first two properties but, unlike the Kullback-Leibler divergence, does not possess the third. We provide empirical evidence suggesting that this is a serious issue in practice. Leveraging insights from probabilistic forecasting we propose an alternative to the Wasserstein metric, the Cram\'er distance. We show that the Cram\'er distance possesses all three desired properties, combining the best of the Wasserstein and Kullback-Leibler divergences. To illustrate the relevance of the Cram\'er distance in practice we design a new algorithm, the Cram\'er Generative Adversarial Network (GAN), and show that it performs significantly better than the related Wasserstein GAN.
Safe and Efficient Off-Policy Reinforcement Learning
Munos, Rémi, Stepleton, Tom, Harutyunyan, Anna, Bellemare, Marc G.
In this work, we take a fresh look at some old and new algorithms for off-policy, return-based reinforcement learning. Expressing these in a common form, we derive a novel algorithm, Retrace($\lambda$), with three desired properties: (1) it has low variance; (2) it safely uses samples collected from any behaviour policy, whatever its degree of "off-policyness"; and (3) it is efficient as it makes the best use of samples collected from near on-policy behaviour policies. We analyze the contractive nature of the related operator under both off-policy policy evaluation and control settings and derive online sample-based algorithms. We believe this is the first return-based off-policy control algorithm converging a.s. to $Q^*$ without the GLIE assumption (Greedy in the Limit with Infinite Exploration). As a corollary, we prove the convergence of Watkins' Q($\lambda$), which was an open problem since 1989. We illustrate the benefits of Retrace($\lambda$) on a standard suite of Atari 2600 games.
Spectral Thompson Sampling
Kocák, Tomáš (INRIA Lille - Nord Europe) | Valko, Michal (INRIA Lille - Nord Europe) | Munos, Rémi (INRIA Lille - Nord Europe and Microsoft Research, New England, USA) | Agrawal, Shipra (Microsoft Research, Bangalore)
Thompson Sampling (TS) has surged a lot of interest due to its good empirical performance, in particular in the computational advertising. Though successful, the tools for its performance analysis appeared only recently. In this paper, we describe and analyze SpectralTS algorithm for a bandit problem, where the payoffs of the choices are smooth given an underlying graph. In this setting, each choice is a node of a graph and the expected payoffs of the neighboring nodes are assumed to be similar. Although the setting has application both in recommender systems and advertising, the traditional algorithms would scale poorly with the number of choices. For that purpose we consider an effective dimension d, which is small in real-world graphs. We deliver the analysis showing that the regret of SpectralTS scales as d\sqrt(T \ln N) with high probability, where T is the time horizon and N is the number of choices. Since a d\sqrt(T \ln N) regret is comparable to the known results, SpectralTS offers a computationally more efficient alternative. We also show that our algorithm is competitive on both synthetic and real-world data.
Risk-Aversion in Multi-armed Bandits
Sani, Amir, Lazaric, Alessandro, Munos, Rémi
In stochastic multi--armed bandits the objective is to solve the exploration--exploitation dilemma and ultimately maximize the expected reward. Nonetheless, in many practical problems, maximizing the expected reward is not the most desirable objective. In this paper, we introduce a novel setting based on the principle of risk--aversion where the objective is to compete against the arm with the best risk--return trade--off. This setting proves to be intrinsically more difficult than the standard multi-arm bandit setting due in part to an exploration risk which introduces a regret associated to the variability of an algorithm. Using variance as a measure of risk, we introduce two new algorithms, we investigate their theoretical guarantees, and we report preliminary empirical results.
Bandit Algorithms boost Brain Computer Interfaces for motor-task selection of a brain-controlled button
Fruitet, Joan, Carpentier, Alexandra, Clerc, Maureen, Munos, Rémi
A brain-computer interface (BCI) allows users to “communicate” with a computer without using their muscles. BCI based on sensori-motor rhythms use imaginary motor tasks, such as moving the right or left hand to send control signals. The performances of a BCI can vary greatly across users but also depend on the tasks used, making the problem of appropriate task selection an important issue. This study presents a new procedure to automatically select as fast as possible a discriminant motor task for a brain-controlled button. We develop for this purpose an adaptive algorithm UCB-classif based on the stochastic bandit theory. This shortens the training stage, thereby allowing the exploration of a greater variety of tasks. By not wasting time on inefficient tasks, and focusing on the most promising ones, this algorithm results in a faster task selection and a more efficient use of the BCI training session. Comparing the proposed method to the standard practice in task selection, for a fixed time budget, UCB-classif leads to an improve classification rate, and for a fix classification rate, to a reduction of the time spent in training by 50%.