Not enough data to create a plot.
Try a different view from the menu above.
Mukherjee, Animesh
Diversity matters: Robustness of bias measurements in Wikidata
Das, Paramita, Karnam, Sai Keerthana, Panda, Anirban, Guda, Bhanu Prakash Reddy, Sarkar, Soumya, Mukherjee, Animesh
With the widespread use of knowledge graphs (KG) in various automated AI systems and applications, it is very important to ensure that information retrieval algorithms leveraging them are free from societal biases. Previous works have depicted biases that persist in KGs, as well as employed several metrics for measuring the biases. However, such studies lack the systematic exploration of the sensitivity of the bias measurements, through varying sources of data, or the embedding algorithms used. To address this research gap, in this work, we present a holistic analysis of bias measurement on the knowledge graph. First, we attempt to reveal data biases that surface in Wikidata for thirteen different demographics selected from seven continents. Next, we attempt to unfold the variance in the detection of biases by two different knowledge graph embedding algorithms - TransE and ComplEx. We conduct our extensive experiments on a large number of occupations sampled from the thirteen demographics with respect to the sensitive attribute, i.e., gender. Our results show that the inherent data bias that persists in KG can be altered by specific algorithm bias as incorporated by KG embedding learning algorithms. Further, we show that the choice of the state-of-the-art KG embedding algorithm has a strong impact on the ranking of biased occupations irrespective of gender. We observe that the similarity of the biased occupations across demographics is minimal which reflects the socio-cultural differences around the globe. We believe that this full-scale audit of the bias measurement pipeline will raise awareness among the community while deriving insights related to design choices of data and algorithms both and refrain from the popular dogma of ``one-size-fits-all''.
HateProof: Are Hateful Meme Detection Systems really Robust?
Aggarwal, Piush, Chawla, Pranit, Das, Mithun, Saha, Punyajoy, Mathew, Binny, Zesch, Torsten, Mukherjee, Animesh
Exploiting social media to spread hate has tremendously increased over the years. Lately, multi-modal hateful content such as memes has drawn relatively more traction than uni-modal content. Moreover, the availability of implicit content payloads makes them fairly challenging to be detected by existing hateful meme detection systems. In this paper, we present a use case study to analyze such systems' vulnerabilities against external adversarial attacks. We find that even very simple perturbations in uni-modal and multi-modal settings performed by humans with little knowledge about the model can make the existing detection models highly vulnerable. Empirically, we find a noticeable performance drop of as high as 10% in the macro-F1 score for certain attacks. As a remedy, we attempt to boost the model's robustness using contrastive learning as well as an adversarial training-based method - VILLA. Using an ensemble of the above two approaches, in two of our high resolution datasets, we are able to (re)gain back the performance to a large extent for certain attacks. We believe that ours is a first step toward addressing this crucial problem in an adversarial setting and would inspire more such investigations in the future.
"Dummy Grandpa, do you know anything?": Identifying and Characterizing Ad hominem Fallacy Usage in the Wild
Patel, Utkarsh, Mukherjee, Animesh, Mondal, Mainack
Today, participating in discussions on online forums is extremely commonplace and these discussions have started rendering a strong influence on the overall opinion of online users. Naturally, twisting the flow of the argument can have a strong impact on the minds of naive users, which in the long run might have socio-political ramifications, for example, winning an election or spreading targeted misinformation. Thus, these platforms are potentially highly vulnerable to malicious players who might act individually or as a cohort to breed fallacious arguments with a motive to sway public opinion. Ad hominem arguments are one of the most effective forms of such fallacies. Although a simple fallacy, it is effective enough to sway public debates in offline world and can be used as a precursor to shutting down the voice of opposition by slander. In this work, we take a first step in shedding light on the usage of ad hominem fallacies in the wild. First, we build a powerful ad hominem detector with high accuracy (F1 more than 83%, showing a significant improvement over prior work), even for datasets for which annotated instances constitute a very small fraction. We then used our detector on 265k arguments collected from the online debate forum - CreateDebate. Our crowdsourced surveys validate our in-the-wild predictions on CreateDebate data (94% match with manual annotation). Our analysis revealed that a surprising 31.23% of CreateDebate content contains ad hominem fallacy, and a cohort of highly active users post significantly more ad hominem to suppress opposing views. Then, our temporal analysis revealed that ad hominem argument usage increased significantly since the 2016 US Presidential election, not only for topics like Politics, but also for Science and Law. We conclude by discussing important implications of our work to detect and defend against ad hominem fallacies.
Hate-Alert@DravidianLangTech-EACL2021: Ensembling strategies for Transformer-based Offensive language Detection
Saha, Debjoy, Paharia, Naman, Chakraborty, Debajit, Saha, Punyajoy, Mukherjee, Animesh
Social media often acts as breeding grounds for different forms of offensive content. For low resource languages like Tamil, the situation is more complex due to the poor performance of multilingual or language-specific models and lack of proper benchmark datasets. Based on this shared task, Offensive Language Identification in Dravidian Languages at EACL 2021, we present an exhaustive exploration of different transformer models, We also provide a genetic algorithm technique for ensembling different models. Our ensembled models trained separately for each language secured the first position in Tamil, the second position in Kannada, and the first position in Malayalam sub-tasks. The models and codes are provided.
"Short is the Road that Leads from Fear to Hate": Fear Speech in Indian WhatsApp Groups
Saha, Punyajoy, Mathew, Binny, Garimella, Kiran, Mukherjee, Animesh
WhatsApp is the most popular messaging app in the world. Due to its popularity, WhatsApp has become a powerful and cheap tool for political campaigning being widely used during the 2019 Indian general election, where it was used to connect to the voters on a large scale. Along with the campaigning, there have been reports that WhatsApp has also become a breeding ground for harmful speech against various protected groups and religious minorities. Many such messages attempt to instil fear among the population about a specific (minority) community. According to research on inter-group conflict, such `fear speech' messages could have a lasting impact and might lead to real offline violence. In this paper, we perform the first large scale study on fear speech across thousands of public WhatsApp groups discussing politics in India. We curate a new dataset and try to characterize fear speech from this dataset. We observe that users writing fear speech messages use various events and symbols to create the illusion of fear among the reader about a target community. We build models to classify fear speech and observe that current state-of-the-art NLP models do not perform well at this task. Fear speech messages tend to spread faster and could potentially go undetected by classifiers built to detect traditional toxic speech due to their low toxic nature. Finally, using a novel methodology to target users with Facebook ads, we conduct a survey among the users of these WhatsApp groups to understand the types of users who consume and share fear speech. We believe that this work opens up new research questions that are very different from tackling hate speech which the research community has been traditionally involved in.
HateXplain: A Benchmark Dataset for Explainable Hate Speech Detection
Mathew, Binny, Saha, Punyajoy, Yimam, Seid Muhie, Biemann, Chris, Goyal, Pawan, Mukherjee, Animesh
Hate speech is a challenging issue plaguing the online social media. While better models for hate speech detection are continuously being developed, there is little research on the bias and interpretability aspects of hate speech. In this paper, we introduce HateXplain, the first benchmark hate speech dataset covering multiple aspects of the issue. Each post in our dataset is annotated from three different perspectives: the basic, commonly used 3-class classification (i.e., hate, offensive or normal), the target community (i.e., the community that has been the victim of hate speech/offensive speech in the post), and the rationales, i.e., the portions of the post on which their labelling decision (as hate, offensive or normal) is based. We utilize existing state-of-the-art models and observe that even models that perform very well in classification do not score high on explainability metrics like model plausibility and faithfulness. We also observe that models, which utilize the human rationales for training, perform better in reducing unintended bias towards target communities. We have made our code and dataset public at https://github.com/punyajoy/HateXplain
All that is English may be Hindi: Enhancing language identification through automatic ranking of likeliness of word borrowing in social media
Patro, Jasabanta, Samanta, Bidisha, Singh, Saurabh, Basu, Abhipsa, Mukherjee, Prithwish, Choudhury, Monojit, Mukherjee, Animesh
In this paper, we present a set of computational methods to identify the likeliness of a word being borrowed, based on the signals from social media. In terms of Spearman correlation coefficient values, our methods perform more than two times better (nearly 0.62) in predicting the borrowing likeliness compared to the best performing baseline (nearly 0.26) reported in literature. Based on this likeliness estimate we asked annotators to re-annotate the language tags of foreign words in predominantly native contexts. In 88 percent of cases the annotators felt that the foreign language tag should be replaced by native language tag, thus indicating a huge scope for improvement of automatic language identification systems.
Language Use Matters: Analysis of the Linguistic Structure of Question Texts Can Characterize Answerability in Quora
Maity, Suman Kalyan (Indian Institute of Technology Kharagpur) | Kharb, Aman (Indian Institute of Technology Kharagpur) | Mukherjee, Animesh (Indian Institute of Technology Kharagpur)
Quora is one of the most popular community Q and A sites of recent times. However, many question posts on this Q and A site often do not get answered. In this paper, we quantify various linguistic activities that discriminates an answered question from an unanswered one. Our central finding is that the way users use language while writing the question text can be a very effective means to characterize answerability. This characterization helps us to predict early if a question remaining unanswered for a specific time period t will eventually be answered or not and achieve an accuracy of 76.26% (t=1 month) and 68.33% (t=3 months). Notably, features representing the language use patterns of the users are most discriminative and alone account for an accuracy of 74.18%. We also compare our method with some of the similar works (Dror et al., Yang et al.) achieving a maximum improvement of ~39% in terms of accuracy.
A Stratified Learning Approach for Predicting the Popularity of Twitter Idioms
Maity, Suman Kalyan (Indian Institute of Technology Kharagpur) | Gupta, Abhishek (Indian Institute of Technology Kharagpur) | Goyal, Pawan (Indian Institute of Technology Kharagpur) | Mukherjee, Animesh (Indian Institute of Technology Kharagpur)
Twitter Idioms are one of the important types of hashtags that spread in Twitter. In this paper, we propose a classifier that can stratify the Idioms from the other kind of hashtags with 86.93% accuracy and high precision and recall rate. We then learn regression models on the stratified samples (Idioms and non-Idioms) separately to predict the popularity of the Idioms. This stratification not only itself allows us to make more accurate predictions but also makes it possible to include Idiom-specific features to separately improve the accuracy for the Idioms. Experimental results show that such stratification during the training phase followed by inclusion of Idiom-specific features leads to an overall improvement of 11.13% and 19.56% in correlation coefficient over the baseline method after the 7th and the 11th month respectively.
Analysis and Prediction of Question Topic Popularity in Community Q&A Sites: A Case Study of Quora
Maity, Suman Kalyan (Indian Institute of Technology Kharagpur) | Sahni, Jot Sarup Singh (Indian Institute of Technology Kharagpur) | Mukherjee, Animesh (Indian Institute of Technology Kharagpur)
In the past few years, Quora a community-driven social platform for question and answering, has grown exponentially from a small community of users into one of the largest and reliable source of Q&A on the Internet. Quora has a built-in social structure integrated to its backbone; users can follow each other, follow question, topics etc. Apart from the social connections that Quora provides, it has developed a knowledge base nicely organized via hierarchy and relatedness of topics. In this paper, we consider a massive dataset of more than four years and analyze the dynamics of topical growth over time; how various factors affect the popularity of a topic or its acceptance in Q&A community. We also propose a regression model to predict the popularity of the topics and discuss the important discriminating features. We achieve a high prediction accuracy (correlation coefficient ~0.773) with low root mean square error (~1.065). We further categorize thetopics into a few broad classes by implementing a simple Latent Dirichlet Allocation (LDA) model on the question texts associated with the topics. In comparison to the data sample with no categorization, this stratification of the topics enhances the prediction accuracies for several categories. However, for certain categories there seems to a slight decrease in the accuracy values and we present an in-depth discussion analyzing the cause for the same pointing out potential ways for improvement. We believe that this thorough measurement study will have a direct application to a service like recommending trending topics in Quora.