Goto

Collaborating Authors

 Muehlebach, Michael


Orthogonal Directions Constrained Gradient Method: from non-linear equality constraints to Stiefel manifold

arXiv.org Machine Learning

We consider the problem of minimizing a non-convex function over a smooth manifold $\mathcal{M}$. We propose a novel algorithm, the Orthogonal Directions Constrained Gradient Method (ODCGM) which only requires computing a projection onto a vector space. ODCGM is infeasible but the iterates are constantly pulled towards the manifold, ensuring the convergence of ODCGM towards $\mathcal{M}$. ODCGM is much simpler to implement than the classical methods which require the computation of a retraction. Moreover, we show that ODCGM exhibits the near-optimal oracle complexities $\mathcal{O}(1/\varepsilon^2)$ and $\mathcal{O}(1/\varepsilon^4)$ in the deterministic and stochastic cases, respectively. Furthermore, we establish that, under an appropriate choice of the projection metric, our method recovers the landing algorithm of Ablin and Peyr\'e (2022), a recently introduced algorithm for optimization over the Stiefel manifold. As a result, we significantly extend the analysis of Ablin and Peyr\'e (2022), establishing near-optimal rates both in deterministic and stochastic frameworks. Finally, we perform numerical experiments which shows the efficiency of ODCGM in a high-dimensional setting.


Robust Recurrent Neural Network to Identify Ship Motion in Open Water with Performance Guarantees -- Technical Report

arXiv.org Artificial Intelligence

Recurrent neural networks are capable of learning the dynamics of an unknown nonlinear system purely from input-output measurements. However, the resulting models do not provide any stability guarantees on the input-output mapping. In this work, we represent a recurrent neural network as a linear time-invariant system with nonlinear disturbances. By introducing constraints on the parameters, we can guarantee finite gain stability and incremental finite gain stability. We apply this identification method to learn the motion of a four-degrees-of-freedom ship that is moving in open water and compare it against other purely learning-based approaches with unconstrained parameters. Our analysis shows that the constrained recurrent neural network has a lower prediction accuracy on the test set, but it achieves comparable results on an out-of-distribution set and respects stability conditions.


On Constraints in First-Order Optimization: A View from Non-Smooth Dynamical Systems

arXiv.org Artificial Intelligence

We introduce a class of first-order methods for smooth constrained optimization that are based on an analogy to non-smooth dynamical systems. Two distinctive features of our approach are that (i) projections or optimizations over the entire feasible set are avoided, in stark contrast to projected gradient methods or the Frank-Wolfe method, and (ii) iterates are allowed to become infeasible, which differs from active set or feasible direction methods, where the descent motion stops as soon as a new constraint is encountered. The resulting algorithmic procedure is simple to implement even when constraints are nonlinear, and is suitable for large-scale constrained optimization problems in which the feasible set fails to have a simple structure. The key underlying idea is that constraints are expressed in terms of velocities instead of positions, which has the algorithmic consequence that optimizations over feasible sets at each iteration are replaced with optimizations over local, sparse convex approximations. In particular, this means that at each iteration only constraints that are violated are taken into account. The result is a simplified suite of algorithms and an expanded range of possible applications in machine learning.


A Dynamical Systems Perspective on Nesterov Acceleration

arXiv.org Machine Learning

We present a dynamical system framework for understanding Nesterov's accelerated gradient method. In contrast to earlier work, our derivation does not rely on a vanishing step size argument. We show that Nesterov acceleration arises from discretizing an ordinary differential equation with a semi-implicit Euler integration scheme. We analyze both the underlying differential equation as well as the discretization to obtain insights into the phenomenon of acceleration. The analysis suggests that a curvature-dependent damping term lies at the heart of the phenomenon. We further establish connections between the discretized and the continuous-time dynamics.