Mu, Yao
Separated Proportional-Integral Lagrangian for Chance Constrained Reinforcement Learning
Peng, Baiyu, Mu, Yao, Duan, Jingliang, Guan, Yang, Li, Shengbo Eben, Chen, Jianyu
Safety is essential for reinforcement learning (RL) applied in real-world tasks like autonomous driving. Chance constraints which guarantee the satisfaction of state constraints at a high probability are suitable to represent the requirements in real-world environment with uncertainty. Existing chance constrained RL methods like the penalty method and the Lagrangian method either exhibit periodic oscillations or cannot satisfy the constraints. In this paper, we address these shortcomings by proposing a separated proportional-integral Lagrangian (SPIL) algorithm. Taking a control perspective, we first interpret the penalty method and the Lagrangian method as proportional feedback and integral feedback control, respectively. Then, a proportional-integral Lagrangian method is proposed to steady learning process while improving safety. To prevent integral overshooting and reduce conservatism, we introduce the integral separation technique inspired by PID control. Finally, an analytical gradient of the chance constraint is utilized for model-based policy optimization. The effectiveness of SPIL is demonstrated by a narrow car-following task. Experiments indicate that compared with previous methods, SPIL improves the performance while guaranteeing safety, with a steady learning process.
Steadily Learn to Drive with Virtual Memory
Zhang, Yuhang, Mu, Yao, Yang, Yujie, Guan, Yang, Li, Shengbo Eben, Sun, Qi, Chen, Jianyu
Reinforcement learning has shown great potential in developing high-level autonomous driving. However, for high-dimensional tasks, current RL methods suffer from low data efficiency and oscillation in the training process. This paper proposes an algorithm called Learn to drive with Virtual Memory (LVM) to overcome these problems. LVM compresses the high-dimensional information into compact latent states and learns a latent dynamic model to summarize the agent's experience. Various imagined latent trajectories are generated as virtual memory by the latent dynamic model. The policy is learned by propagating gradient through the learned latent model with the imagined latent trajectories and thus leads to high data efficiency. Furthermore, a double critic structure is designed to reduce the oscillation during the training process. The effectiveness of LVM is demonstrated by an image-input autonomous driving task, in which LVM outperforms the existing method in terms of data efficiency, learning stability, and control performance.
Model-Based Actor-Critic with Chance Constraint for Stochastic System
Peng, Baiyu, Mu, Yao, Guan, Yang, Li, Shengbo Eben, Yin, Yuming, Chen, Jianyu
Safety constraints are essential for reinforcement learning (RL) applied in real-world situations. Chance constraints are suitable to represent the safety requirements in stochastic systems. Most existing RL methods with chance constraints have a low convergence rate, and only learn a conservative policy. In this paper, we propose a model-based chance constrained actor-critic (CCAC) algorithm which can efficiently learn a safe and non-conservative policy. Different from existing methods that optimize a conservative lower bound, CCAC directly solves the original chance constrained problems, where the objective function and safe probability is simultaneously optimized with adaptive weights. In order to improve the convergence rate, CCAC utilizes the gradient of dynamic model to accelerate policy optimization. The effectiveness of CCAC is demonstrated by an aggressive car-following task. Experiments indicate that compared with previous methods, CCAC improves the performance by 57.6% while guaranteeing safety, with a five times faster convergence rate.