Goto

Collaborating Authors

 Movellan, Javier R.


Audio Vision: Using Audio-Visual Synchrony to Locate Sounds

Neural Information Processing Systems

Psychophysical and physiological evidence shows that sound localization of acoustic signals is strongly influenced by their synchrony with visual signals. This effect, known as ventriloquism, is at work when sound coming from the side of a TV set feels as if it were coming from the mouth of the actors. The ventriloquism effect suggests that there is important information about sound location encoded in the synchrony between the audio and video signals. In spite of this evidence, audiovisual synchrony is rarely used as a source of information in computer vision tasks. In this paper we explore the use of audio visual synchrony to locate sound sources. We developed a system that searches for regions of the visual landscape that correlate highly with the acoustic signals and tags them as likely to contain an acoustic source.


Learning Path Distributions Using Nonequilibrium Diffusion Networks

Neural Information Processing Systems

Department of Mathematics University of California, San Diego La Jolla, CA 92093-0112 Abstract We propose diffusion networks, a type of recurrent neural network with probabilistic dynamics, as models for learning natural signals that are continuous in time and space. We give a formula for the gradient of the log-likelihood of a path with respect to the drift parameters for a diffusion network. This gradient can be used to optimize diffusion networks in the nonequilibrium regime for a wide variety of problems paralleling techniques which have succeeded in engineering fields such as system identification, state estimation and signal filtering. An aspect of this work which is of particular interest to computational neuroscience and hardware design is that with a suitable choice of activation function, e.g., quasi-linear sigmoidal, the gradient formula is local in space and time. 1 Introduction Many natural signals, like pixel gray-levels, line orientations, object position, velocity and shape parameters, are well described as continuous-time continuous-valued stochastic processes; however, the neural network literature has seldom explored the continuous stochastic case. Since the solutions to many decision theoretic problems of interest are naturally formulated using probability distributions, it is desirable to have a flexible framework for approximating probability distributions on continuous path spaces.


Bayesian Robustification for Audio Visual Fusion

Neural Information Processing Systems

Department of Cognitive Science Department of Cognitive Science University of California, San Diego University of California, San Diego La Jolla, CA 92092-0515 La Jolla, CA 92092-0515 Abstract We discuss the problem of catastrophic fusion in multimodal recognition systems. This problem arises in systems that need to fuse different channels in non-stationary environments. Practice shows that when recognition modules within each modality are tested in contexts inconsistent with their assumptions, their influence on the fused product tends to increase, with catastrophic results. We explore a principled solution to this problem based upon Bayesian ideas of competitive models and inference robustification: each sensory channel is provided with simple white-noise context models, and the perceptual hypothesis and context are jointly estimated. Consequently, context deviations are interpreted as changes in white noise contamination strength, automatically adjusting the influence of the module.


Learning Path Distributions Using Nonequilibrium Diffusion Networks

Neural Information Processing Systems

Department of Mathematics University of California, San Diego La Jolla, CA 92093-0112 Abstract We propose diffusion networks, a type of recurrent neural network with probabilistic dynamics, as models for learning natural signals that are continuous in time and space. We give a formula for the gradient of the log-likelihood of a path with respect to the drift parameters for a diffusion network. This gradient can be used to optimize diffusion networks in the nonequilibrium regime for a wide variety of problems paralleling techniques which have succeeded in engineering fields such as system identification, state estimation and signal filtering. An aspect of this work which is of particular interestto computational neuroscience and hardware design is that with a suitable choice of activation function, e.g., quasi-linear sigmoidal, the gradient formula is local in space and time. 1 Introduction Many natural signals, like pixel gray-levels, line orientations, object position, velocity andshape parameters, are well described as continuous-time continuous-valued stochastic processes; however, the neural network literature has seldom explored the continuous stochastic case. Since the solutions to many decision theoretic problems of interest are naturally formulated using probability distributions, it is desirable to have a flexible framework for approximating probability distributions on continuous pathspaces.


Bayesian Robustification for Audio Visual Fusion

Neural Information Processing Systems

Department of Cognitive Science Department of Cognitive Science University of California, San Diego University of California, San Diego La Jolla, CA 92092-0515 La Jolla, CA 92092-0515 Abstract We discuss the problem of catastrophic fusion in multimodal recognition systems. This problem arises in systems that need to fuse different channels in non-stationary environments. Practice shows that when recognition modules within each modality are tested in contexts inconsistent with their assumptions, their influence on the fused product tends to increase, with catastrophic results. We explore a principled solution to this problem based upon Bayesian ideas of competitive models and inference robustification: each sensory channel is provided with simple white-noise context models, and the perceptual hypothesis and context are jointly estimated. Consequently, context deviations are interpreted as changes in white noise contamination strength, automatically adjusting the influence of the module.


Bayesian Robustification for Audio Visual Fusion

Neural Information Processing Systems

Department of Cognitive Science University of California, San Diego La Jolla, CA 92092-0515 Abstract We discuss the problem of catastrophic fusion in multimodal recognition systems.This problem arises in systems that need to fuse different channels in non-stationary environments. Practice shows that when recognition modules within each modality are tested in contexts inconsistent with their assumptions, their influence on the fused product tends to increase, with catastrophic results. We explore aprincipled solution to this problem based upon Bayesian ideas of competitive models and inference robustification: each sensory channel is provided with simple white-noise context models, andthe perceptual hypothesis and context are jointly estimated. Consequently,context deviations are interpreted as changes in white noise contamination strength, automatically adjusting the influence of the module. The approach is tested on a fixed lexicon automatic audiovisual speech recognition problem with very good results. 1 Introduction In this paper we address the problem of catastrophic fusion in automatic multimodal recognition systems.


Dynamic Features for Visual Speechreading: A Systematic Comparison

Neural Information Processing Systems

Humans use visual as well as auditory speech signals to recognize spoken words. A variety of systems have been investigated for performing this task. The main purpose of this research was to systematically compare the performance of a range of dynamic visual features on a speechreading task. We have found that normalization of images to eliminate variation due to translation, scale, and planar rotation yielded substantial improvements in generalization performance regardless of the visual representation used. In addition, the dynamic information in the difference between successive frames yielded better performance than optical-flow based approaches, and compression by local low-pass filtering worked surprisingly better than global principal components analysis (PCA). These results are examined and possible explanations are explored.


Dynamic Features for Visual Speechreading: A Systematic Comparison

Neural Information Processing Systems

Humans use visual as well as auditory speech signals to recognize spoken words. A variety of systems have been investigated for performing thistask. The main purpose of this research was to systematically comparethe performance of a range of dynamic visual features on a speechreading task. We have found that normalization ofimages to eliminate variation due to translation, scale, and planar rotation yielded substantial improvements in generalization performanceregardless of the visual representation used. In addition, the dynamic information in the difference between successive framesyielded better performance than optical-flow based approaches, and compression by local low-pass filtering worked surprisingly betterthan global principal components analysis (PCA). These results are examined and possible explanations are explored.


Visual Speech Recognition with Stochastic Networks

Neural Information Processing Systems

This paper presents ongoing work on a speaker independent visual speech recognition system. The work presented here builds on previous research efforts in this area and explores the potential use of simple hidden Markov models for limited vocabulary, speaker independent visual speech recognition. The task at hand is recognition of the first four English digits, a task with possible applications in car-phone dialing. The images were modeled as mixtures of independent Gaussian distributions, and the temporal dependencies were captured with standard left-to-right hidden Markov models. The results indicate that simple hidden Markov models may be used to successfully recognize relatively unprocessed image sequences.


Visual Speech Recognition with Stochastic Networks

Neural Information Processing Systems

This paper presents ongoing work on a speaker independent visual speech recognition system. The work presented here builds on previous research efforts in this area and explores the potential use of simple hidden Markov models for limited vocabulary, speaker independent visual speech recognition. The task at hand is recognition of the first four English digits, a task with possible applications in car-phone dialing. The images were modeled as mixtures of independent Gaussian distributions, and the temporal dependencies were captured with standard left-to-right hidden Markov models. The results indicate that simple hidden Markov models may be used to successfully recognize relatively unprocessed image sequences.