Goto

Collaborating Authors

 Mourtada, Jaouad


Universal consistency and minimax rates for online Mondrian Forests

arXiv.org Machine Learning

We establish the consistency of an algorithm of Mondrian Forests, a randomized classification algorithm that can be implemented online. First, we amend the original Mondrian Forest algorithm, that considers a fixed lifetime parameter. Indeed, the fact that this parameter is fixed hinders the statistical consistency of the original procedure. Our modified Mondrian Forest algorithm grows trees with increasing lifetime parameters $\lambda_n$, and uses an alternative updating rule, allowing to work also in an online fashion. Second, we provide a theoretical analysis establishing simple conditions for consistency. Our theoretical analysis also exhibits a surprising fact: our algorithm achieves the minimax rate (optimal rate) for the estimation of a Lipschitz regression function, which is a strong extension of previous results to an arbitrary dimension.


Efficient tracking of a growing number of experts

arXiv.org Machine Learning

We consider a variation on the problem of prediction with expert advice, where new forecasters that were unknown until then may appear at each round. As often in prediction with expert advice, designing an algorithm that achieves near-optimal regret guarantees is straightforward, using aggregation of experts. However, when the comparison class is sufficiently rich, for instance when the best expert and the set of experts itself changes over time, such strategies naively require to maintain a prohibitive number of weights (typically exponential with the time horizon). By contrast, designing strategies that both achieve a near-optimal regret and maintain a reasonable number of weights is highly non-trivial. We consider three increasingly challenging objectives (simple regret, shifting regret and sparse shifting regret) that extend existing notions defined for a fixed expert ensemble; in each case, we design strategies that achieve tight regret bounds, adaptive to the parameters of the comparison class, while being computationally inexpensive. Moreover, our algorithms are anytime, agnostic to the number of incoming experts and completely parameter-free. Such remarkable results are made possible thanks to two simple but highly effective recipes: first the "abstention trick" that comes from the specialist framework and enables to handle the least challenging notions of regret, but is limited when addressing more sophisticated objectives. Second, the "muting trick" that we introduce to give more flexibility. We show how to combine these two tricks in order to handle the most challenging class of comparison strategies.