Not enough data to create a plot.
Try a different view from the menu above.
Moro, Robert
Increasing the Robustness of the Fine-tuned Multilingual Machine-Generated Text Detectors
Macko, Dominik, Moro, Robert, Srba, Ivan
Since the proliferation of LLMs, there have been concerns about their misuse for harmful content creation and spreading. Recent studies justify such fears, providing evidence of LLM vulnerabilities and high potential of their misuse. Humans are no longer able to distinguish between high-quality machine-generated and authentic human-written texts. Therefore, it is crucial to develop automated means to accurately detect machine-generated content. It would enable to identify such content in online information space, thus providing an additional information about its credibility. This work addresses the problem by proposing a robust fine-tuning process of LLMs for the detection task, making the detectors more robust against obfuscation and more generalizable to out-of-distribution data.
Evaluation of LLM Vulnerabilities to Being Misused for Personalized Disinformation Generation
Zugecova, Aneta, Macko, Dominik, Srba, Ivan, Moro, Robert, Kopal, Jakub, Marcincinova, Katarina, Mesarcik, Matus
The capabilities of recent large language models (LLMs) to generate high-quality content indistinguishable by humans from human-written texts rises many concerns regarding their misuse. Previous research has shown that LLMs can be effectively misused for generating disinformation news articles following predefined narratives. Their capabilities to generate personalized (in various aspects) content have also been evaluated and mostly found usable. However, a combination of personalization and disinformation abilities of LLMs has not been comprehensively studied yet. Such a dangerous combination should trigger integrated safety filters of the LLMs, if there are some. This study fills this gap by evaluation of vulnerabilities of recent open and closed LLMs, and their willingness to generate personalized disinformation news articles in English. We further explore whether the LLMs can reliably meta-evaluate the personalization quality and whether the personalization affects the generated-texts detectability. Our results demonstrate the need for stronger safety-filters and disclaimers, as those are not properly functioning in most of the evaluated LLMs. Additionally, our study revealed that the personalization actually reduces the safety-filter activations; thus effectively functioning as a jailbreak. Such behavior must be urgently addressed by LLM developers and service providers.
A Survey on Automatic Credibility Assessment of Textual Credibility Signals in the Era of Large Language Models
Srba, Ivan, Razuvayevskaya, Olesya, Leite, Joรฃo A., Moro, Robert, Schlicht, Ipek Baris, Tonelli, Sara, Garcรญa, Francisco Moreno, Lottmann, Santiago Barrio, Teyssou, Denis, Porcellini, Valentin, Scarton, Carolina, Bontcheva, Kalina, Bielikova, Maria
In the current era of social media and generative AI, an ability to automatically assess the credibility of online social media content is of tremendous importance. Credibility assessment is fundamentally based on aggregating credibility signals, which refer to small units of information, such as content factuality, bias, or a presence of persuasion techniques, into an overall credibility score. Credibility signals provide a more granular, more easily explainable and widely utilizable information in contrast to currently predominant fake news detection, which utilizes various (mostly latent) features. A growing body of research on automatic credibility assessment and detection of credibility signals can be characterized as highly fragmented and lacking mutual interconnections. This issue is even more prominent due to a lack of an up-to-date overview of research works on automatic credibility assessment. In this survey, we provide such systematic and comprehensive literature review of 175 research papers while focusing on textual credibility signals and Natural Language Processing (NLP), which undergoes a significant advancement due to Large Language Models (LLMs). While positioning the NLP research into the context of other multidisciplinary research works, we tackle with approaches for credibility assessment as well as with 9 categories of credibility signals (we provide a thorough analysis for 3 of them, namely: 1) factuality, subjectivity and bias, 2) persuasion techniques and logical fallacies, and 3) claims and veracity). Following the description of the existing methods, datasets and tools, we identify future challenges and opportunities, while paying a specific attention to recent rapid development of generative AI.
A Ship of Theseus: Curious Cases of Paraphrasing in LLM-Generated Texts
Tripto, Nafis Irtiza, Venkatraman, Saranya, Macko, Dominik, Moro, Robert, Srba, Ivan, Uchendu, Adaku, Le, Thai, Lee, Dongwon
In the realm of text manipulation and linguistic transformation, the question of authorship has been a subject of fascination and philosophical inquiry. Much like the Ship of Theseus paradox, which ponders whether a ship remains the same when each of its original planks is replaced, our research delves into an intriguing question: Does a text retain its original authorship when it undergoes numerous paraphrasing iterations? Specifically, since Large Language Models (LLMs) have demonstrated remarkable proficiency in both the generation of original content and the modification of human-authored texts, a pivotal question emerges concerning the determination of authorship in instances where LLMs or similar paraphrasing tools are employed to rephrase the text--i.e., whether authorship should be attributed to the original human author or the AI-powered tool. Therefore, we embark on a philosophical voyage through the seas of language and authorship to unravel this intricate puzzle. Using a computational approach, we discover that the diminishing performance in text classification models, with each successive paraphrasing iteration, is closely associated with the extent of deviation from the original author's style, thus provoking a reconsideration of the current notion of authorship.
Authorship Obfuscation in Multilingual Machine-Generated Text Detection
Macko, Dominik, Moro, Robert, Uchendu, Adaku, Srba, Ivan, Lucas, Jason Samuel, Yamashita, Michiharu, Tripto, Nafis Irtiza, Lee, Dongwon, Simko, Jakub, Bielikova, Maria
High-quality text generation capability of latest Large Language Models (LLMs) causes concerns about their misuse (e.g., in massive generation/spread of disinformation). Machine-generated text (MGT) detection is important to cope with such threats. However, it is susceptible to authorship obfuscation (AO) methods, such as paraphrasing, which can cause MGTs to evade detection. So far, this was evaluated only in monolingual settings. Thus, the susceptibility of recently proposed multilingual detectors is still unknown. We fill this gap by comprehensively benchmarking the performance of 10 well-known AO methods, attacking 37 MGT detection methods against MGTs in 11 languages (i.e., 10 $\times$ 37 $\times$ 11 = 4,070 combinations). We also evaluate the effect of data augmentation on adversarial robustness using obfuscated texts. The results indicate that all tested AO methods can cause detection evasion in all tested languages, where homoglyph attacks are especially successful.
Disinformation Capabilities of Large Language Models
Vykopal, Ivan, Pikuliak, Matรบลก, Srba, Ivan, Moro, Robert, Macko, Dominik, Bielikova, Maria
Automated disinformation generation is often listed as one of the risks of large language models (LLMs). The theoretical ability to flood the information space with disinformation content might have dramatic consequences for democratic societies around the world. This paper presents a comprehensive study of the disinformation capabilities of the current generation of LLMs to generate false news articles in English language. In our study, we evaluated the capabilities of 10 LLMs using 20 disinformation narratives. We evaluated several aspects of the LLMs: how well they are at generating news articles, how strongly they tend to agree or disagree with the disinformation narratives, how often they generate safety warnings, etc. We also evaluated the abilities of detection models to detect these articles as LLM-generated. We conclude that LLMs are able to generate convincing news articles that agree with dangerous disinformation narratives.
Is it indeed bigger better? The comprehensive study of claim detection LMs applied for disinformation tackling
Hyben, Martin, Kula, Sebastian, Srba, Ivan, Moro, Robert, Simko, Jakub
This study compares the performance of (1) fine-tuned models and (2) extremely large language models on the task of check-worthy claim detection. For the purpose of the comparison we composed a multilingual and multi-topical dataset comprising texts of various sources and styles. Building on this, we performed a benchmark analysis to determine the most general multilingual and multi-topical claim detector. We chose three state-of-the-art models in the check-worthy claim detection task and fine-tuned them. Furthermore, we selected three state-of-the-art extremely large language models without any fine-tuning. We made modifications to the models to adapt them for multilingual settings and through extensive experimentation and evaluation. We assessed the performance of all the models in terms of accuracy, recall, and F1-score in in-domain and cross-domain scenarios. Our results demonstrate that despite the technological progress in the area of natural language processing, the models fine-tuned for the task of check-worthy claim detection still outperform the zero-shot approaches in a cross-domain settings.
MULTITuDE: Large-Scale Multilingual Machine-Generated Text Detection Benchmark
Macko, Dominik, Moro, Robert, Uchendu, Adaku, Lucas, Jason Samuel, Yamashita, Michiharu, Pikuliak, Matรบลก, Srba, Ivan, Le, Thai, Lee, Dongwon, Simko, Jakub, Bielikova, Maria
There is a lack of research into capabilities of recent LLMs to generate convincing text in languages other than English and into performance of detectors of machine-generated text in multilingual settings. This is also reflected in the available benchmarks which lack authentic texts in languages other than English and predominantly cover older generators. To fill this gap, we introduce MULTITuDE, a novel benchmarking dataset for multilingual machine-generated text detection comprising of 74,081 authentic and machine-generated texts in 11 languages (ar, ca, cs, de, en, es, nl, pt, ru, uk, and zh) generated by 8 multilingual LLMs. Using this benchmark, we compare the performance of zero-shot (statistical and black-box) and fine-tuned detectors. Considering the multilinguality, we evaluate 1) how these detectors generalize to unseen languages (linguistically similar as well as dissimilar) and unseen LLMs and 2) whether the detectors improve their performance when trained on multiple languages.
Multilingual Previously Fact-Checked Claim Retrieval
Pikuliak, Matรบลก, Srba, Ivan, Moro, Robert, Hromadka, Timo, Smolen, Timotej, Melisek, Martin, Vykopal, Ivan, Simko, Jakub, Podrouzek, Juraj, Bielikova, Maria
Fact-checkers are often hampered by the sheer amount of online content that needs to be fact-checked. NLP can help them by retrieving already existing fact-checks relevant to the content being investigated. This paper introduces a new multilingual dataset -- MultiClaim -- for previously fact-checked claim retrieval. We collected 28k posts in 27 languages from social media, 206k fact-checks in 39 languages written by professional fact-checkers, as well as 31k connections between these two groups. This is the most extensive and the most linguistically diverse dataset of this kind to date. We evaluated how different unsupervised methods fare on this dataset and its various dimensions. We show that evaluating such a diverse dataset has its complexities and proper care needs to be taken before interpreting the results. We also evaluated a supervised fine-tuning approach, improving upon the unsupervised method significantly.
Automated, not Automatic: Needs and Practices in European Fact-checking Organizations as a basis for Designing Human-centered AI Systems
Hrckova, Andrea, Moro, Robert, Srba, Ivan, Simko, Jakub, Bielikova, Maria
To mitigate the negative effects of false information more effectively, the development of automated AI (artificial intelligence) tools assisting fact-checkers is needed. Despite the existing research, there is still a gap between the fact-checking practitioners' needs and pains and the current AI research. We aspire to bridge this gap by employing methods of information behavior research to identify implications for designing better human-centered AI-based supporting tools. In this study, we conducted semi-structured in-depth interviews with Central European fact-checkers. The information behavior and requirements on desired supporting tools were analyzed using iterative bottom-up content analysis, bringing the techniques from grounded theory. The most significant needs were validated with a survey extended to fact-checkers from across Europe, in which we collected 24 responses from 20 European countries, i.e., 62% active European IFCN (International Fact-Checking Network) signatories. Our contributions are theoretical as well as practical. First, by being able to map our findings about the needs of fact-checking organizations to the relevant tasks for AI research, we have shown that the methods of information behavior research are relevant for studying the processes in the organizations and that these methods can be used to bridge the gap between the users and AI researchers. Second, we have identified fact-checkers' needs and pains focusing on so far unexplored dimensions and emphasizing the needs of fact-checkers from Central and Eastern Europe as well as from low-resource language groups which have implications for development of new resources (datasets) as well as for the focus of AI research in this domain.