Morency, Louis-Philippe
Cross-Modal Generalization: Learning in Low Resource Modalities via Meta-Alignment
Liang, Paul Pu, Wu, Peter, Ziyin, Liu, Morency, Louis-Philippe, Salakhutdinov, Ruslan
The natural world is abundant with concepts expressed via visual, acoustic, tactile, and linguistic modalities. Much of the existing progress in multimodal learning, however, focuses primarily on problems where the same set of modalities are present at train and test time, which makes learning in low-resource modalities particularly difficult. In this work, we propose algorithms for cross-modal generalization: a learning paradigm to train a model that can (1) quickly perform new tasks in a target modality (i.e. meta-learning) and (2) doing so while being trained on a different source modality. We study a key research question: how can we ensure generalization across modalities despite using separate encoders for different source and target modalities? Our solution is based on meta-alignment, a novel method to align representation spaces using strongly and weakly paired cross-modal data while ensuring quick generalization to new tasks across different modalities. We study this problem on 3 classification tasks: text to image, image to audio, and text to speech. Our results demonstrate strong performance even when the new target modality has only a few (1-10) labeled samples and in the presence of noisy labels, a scenario particularly prevalent in low-resource modalities.
Neural Methods for Point-wise Dependency Estimation
Tsai, Yao-Hung Hubert, Zhao, Han, Yamada, Makoto, Morency, Louis-Philippe, Salakhutdinov, Ruslan
Since its inception, the neural estimation of mutual information (MI) has demonstrated the empirical success of modeling expected dependency between high-dimensional random variables. However, MI is an aggregate statistic and cannot be used to measure point-wise dependency between different events. In this work, instead of estimating the expected dependency, we focus on estimating point-wise dependency (PD), which quantitatively measures how likely two outcomes co-occur. We show that we can naturally obtain PD when we are optimizing MI neural variational bounds. However, optimizing these bounds is challenging due to its large variance in practice. To address this issue, we develop two methods (free of optimizing MI variational bounds): Probabilistic Classifier and Density-Ratio Fitting. We demonstrate the effectiveness of our approaches in 1) MI estimation, 2) self-supervised representation learning, and 3) cross-modal retrieval task.
Self-supervised Learning from a Multi-view Perspective
Tsai, Yao-Hung Hubert, Wu, Yue, Salakhutdinov, Ruslan, Morency, Louis-Philippe
As a subset of unsupervised representation learning, self-supervised representation learning adopts self-defined signals as supervision and uses the learned representation for downstream tasks, such as object detection and image captioning. Many proposed approaches for self-supervised learning follow naturally a multi-view perspective, where the input (e.g., original images) and the self-supervised signals (e.g., augmented images) can be seen as two redundant views of the data. Building from this multi-view perspective, this paper provides an information-theoretical framework to better understand the properties that encourage successful self-supervised learning. Specifically, we demonstrate that self-supervised learned representations can extract task-relevant information and discard task-irrelevant information. Our theoretical framework paves the way to a larger space of self-supervised learning objective design. In particular, we propose a composite objective that bridges the gap between prior contrastive and predictive learning objectives, and introduce an additional objective term to discard task-irrelevant information. To verify our analysis, we conduct controlled experiments to evaluate the impact of the composite objectives. We also explore our framework's empirical generalization beyond the multi-view perspective, where the cross-view redundancy may not be clearly observed.
What Gives the Answer Away? Question Answering Bias Analysis on Video QA Datasets
Yang, Jianing, Zhu, Yuying, Wang, Yongxin, Yi, Ruitao, Zadeh, Amir, Morency, Louis-Philippe
Question answering biases in video QA datasets can mislead multimodal model to overfit to QA artifacts and jeopardize the model's ability to generalize. Understanding how strong these QA biases are and where they come from helps the community measure progress more accurately and provide researchers insights to debug their models. In this paper, we analyze QA biases in popular video question answering datasets and discover pretrained language models can answer 37-48% questions correctly without using any multimodal context information, far exceeding the 20% random guess baseline for 5-choose-1 multiple-choice questions. Our ablation study shows biases can come from annotators and type of questions. Specifically, annotators that have been seen during training are better predicted by the model and reasoning, abstract questions incur more biases than factual, direct questions. We also show empirically that using annotator-non-overlapping train-test splits can reduce QA biases for video QA datasets.
To React or not to React: End-to-End Visual Pose Forecasting for Personalized Avatar during Dyadic Conversations
Ahuja, Chaitanya, Ma, Shugao, Morency, Louis-Philippe, Sheikh, Yaser
Non verbal behaviours such as gestures, facial expressions, body posture, and para-linguistic cues have been shown to complement or clarify verbal messages. Hence to improve telepresence, in form of an avatar, it is important to model these behaviours, especially in dyadic interactions. Creating such personalized avatars not only requires to model intrapersonal dynamics between a avatar's speech and their body pose, but it also needs to model interpersonal dynamics with the interlocutor present in the conversation. In this paper, we introduce a neural architecture named Dyadic Residual-Attention Model (DRAM), which integrates intrapersonal (monadic) and interpersonal (dyadic) dynamics using selective attention to generate sequences of body pose conditioned on audio and body pose of the interlocutor and audio of the human operating the avatar. We evaluate our proposed model on dyadic conversational data consisting of pose and audio of both participants, confirming the importance of adaptive attention between monadic and dyadic dynamics when predicting avatar pose. We also conduct a user study to analyze judgments of human observers. Our results confirm that the generated body pose is more natural, models intrapersonal dynamics and interpersonal dynamics better than non-adaptive monadic/dyadic models.
Transformer Dissection: An Unified Understanding for Transformer's Attention via the Lens of Kernel
Tsai, Yao-Hung Hubert, Bai, Shaojie, Yamada, Makoto, Morency, Louis-Philippe, Salakhutdinov, Ruslan
Transformer is a powerful architecture that achieves superior performance on various sequence learning tasks, including neural machine translation, language understanding, and sequence prediction. At the core of the Transformer is the attention mechanism, which concurrently processes all inputs in the streams. In this paper, we present a new formulation of attention via the lens of the kernel. To be more precise, we realize that the attention can be seen as applying kernel smoother over the inputs with the kernel scores being the similarities between inputs. This new formulation gives us a better way to understand individual components of the Transformer's attention, such as the better way to integrate the positional embedding. Another important advantage of our kernel-based formulation is that it paves the way to a larger space of composing Transformer's attention. As an example, we propose a new variant of Transformer's attention which models the input as a product of symmetric kernels. This approach achieves competitive performance to the current state of the art model with less computation. In our experiments, we empirically study different kernel construction strategies on two widely used tasks: neural machine translation and sequence prediction.
M-BERT: Injecting Multimodal Information in the BERT Structure
Rahman, Wasifur, Hasan, Md Kamrul, Zadeh, Amir, Morency, Louis-Philippe, Hoque, Mohammed Ehsan
Multimodal language analysis is an emerging research area in natural language processing that models language in a multimodal manner. It aims to understand language from the modalities of text, visual, and acoustic by modeling both intra-modal and cross-modal interactions. BERT (Bidirectional Encoder Representations from Transformers) provides strong contextual language representations after training on large-scale unlabeled corpora. Fine-tuning the vanilla BERT model has shown promising results in building state-of-the-art models for diverse NLP tasks like question answering and language inference. However, fine-tuning BERT in the presence of information from other modalities remains an open research problem. In this paper, we inject multimodal information within the input space of BERT network for modeling multimodal language. The proposed injection method allows BERT to reach a new state of the art of $84.38\%$ binary accuracy on CMU-MOSI dataset (multimodal sentiment analysis) with a gap of 5.98 percent to the previous state of the art and 1.02 percent to the text-only BERT.
Learning Representations from Imperfect Time Series Data via Tensor Rank Regularization
Liang, Paul Pu, Liu, Zhun, Tsai, Yao-Hung Hubert, Zhao, Qibin, Salakhutdinov, Ruslan, Morency, Louis-Philippe
There has been an increased interest in multimodal language processing including multimodal dialog, question answering, sentiment analysis, and speech recognition. However, naturally occurring multimodal data is often imperfect as a result of imperfect modalities, missing entries or noise corruption. To address these concerns, we present a regularization method based on tensor rank minimization. Our method is based on the observation that high-dimensional multimodal time series data often exhibit correlations across time and modalities which leads to low-rank tensor representations. However, the presence of noise or incomplete values breaks these correlations and results in tensor representations of higher rank. We design a model to learn such tensor representations and effectively regularize their rank. Experiments on multimodal language data show that our model achieves good results across various levels of imperfection.
Deep Gamblers: Learning to Abstain with Portfolio Theory
Ziyin, Liu, Wang, Zhikang, Liang, Paul Pu, Salakhutdinov, Ruslan, Morency, Louis-Philippe, Ueda, Masahito
We deal with the \textit{selective classification} problem (supervised-learning problem with a rejection option), where we want to achieve the best performance at a certain level of coverage of the data. We transform the original $m$-class classification problem to $(m+1)$-class where the $(m+1)$-th class represents the model abstaining from making a prediction due to uncertainty. Inspired by portfolio theory, we propose a loss function for the selective classification problem based on the doubling rate of gambling. We show that minimizing this loss function has a natural interpretation as maximizing the return of a \textit{horse race}, where a player aims to balance between betting on an outcome (making a prediction) when confident and reserving one's winnings (abstaining) when not confident. This loss function allows us to train neural networks and characterize the uncertainty of prediction in an end-to-end fashion. In comparison with previous methods, our method requires almost no modification to the model inference algorithm or neural architecture. Experimentally, we show that our method can identify both uncertain and outlier data points, and achieves strong results on SVHN and CIFAR10 at various coverages of the data.
Strong and Simple Baselines for Multimodal Utterance Embeddings
Liang, Paul Pu, Lim, Yao Chong, Tsai, Yao-Hung Hubert, Salakhutdinov, Ruslan, Morency, Louis-Philippe
Human language is a rich multimodal signal consisting of spoken words, facial expressions, body gestures, and vocal intonations. Learning representations for these spoken utterances is a complex research problem due to the presence of multiple heterogeneous sources of information. Recent advances in multimodal learning have followed the general trend of building more complex models that utilize various attention, memory and recurrent components. In this paper, we propose two simple but strong baselines to learn embeddings of multimodal utterances. The first baseline assumes a conditional factorization of the utterance into unimodal factors. Each unimodal factor is modeled using the simple form of a likelihood function obtained via a linear transformation of the embedding. We show that the optimal embedding can be derived in closed form by taking a weighted average of the unimodal features. In order to capture richer representations, our second baseline extends the first by factorizing into unimodal, bimodal, and trimodal factors, while retaining simplicity and efficiency during learning and inference. From a set of experiments across two tasks, we show strong performance on both supervised and semi-supervised multimodal prediction, as well as significant (10 times) speedups over neural models during inference. Overall, we believe that our strong baseline models offer new benchmarking options for future research in multimodal learning.