Goto

Collaborating Authors

 Montanari, Andrea


Generalization error of random features and kernel methods: hypercontractivity and kernel matrix concentration

arXiv.org Machine Learning

Consider the classical supervised learning problem: we are given data $(y_i,{\boldsymbol x}_i)$, $i\le n$, with $y_i$ a response and ${\boldsymbol x}_i\in {\mathcal X}$ a covariates vector, and try to learn a model $f:{\mathcal X}\to{\mathbb R}$ to predict future responses. Random features methods map the covariates vector ${\boldsymbol x}_i$ to a point ${\boldsymbol \phi}({\boldsymbol x}_i)$ in a higher dimensional space ${\mathbb R}^N$, via a random featurization map ${\boldsymbol \phi}$. We study the use of random features methods in conjunction with ridge regression in the feature space ${\mathbb R}^N$. This can be viewed as a finite-dimensional approximation of kernel ridge regression (KRR), or as a stylized model for neural networks in the so called lazy training regime. We define a class of problems satisfying certain spectral conditions on the underlying kernels, and a hypercontractivity assumption on the associated eigenfunctions. These conditions are verified by classical high-dimensional examples. Under these conditions, we prove a sharp characterization of the error of random features ridge regression. In particular, we address two fundamental questions: $(1)$~What is the generalization error of KRR? $(2)$~How big $N$ should be for the random features approximation to achieve the same error as KRR? In this setting, we prove that KRR is well approximated by a projection onto the top $\ell$ eigenfunctions of the kernel, where $\ell$ depends on the sample size $n$. We show that the test error of random features ridge regression is dominated by its approximation error and is larger than the error of KRR as long as $N\le n^{1-\delta}$ for some $\delta>0$. We characterize this gap. For $N\ge n^{1+\delta}$, random features achieve the same error as the corresponding KRR, and further increasing $N$ does not lead to a significant change in test error.


Underspecification Presents Challenges for Credibility in Modern Machine Learning

arXiv.org Machine Learning

ML models often exhibit unexpectedly poor behavior when they are deployed in real-world domains. We identify underspecification as a key reason for these failures. An ML pipeline is underspecified when it can return many predictors with equivalently strong held-out performance in the training domain. Underspecification is common in modern ML pipelines, such as those based on deep learning. Predictors returned by underspecified pipelines are often treated as equivalent based on their training domain performance, but we show here that such predictors can behave very differently in deployment domains. This ambiguity can lead to instability and poor model behavior in practice, and is a distinct failure mode from previously identified issues arising from structural mismatch between training and deployment domains. We show that this problem appears in a wide variety of practical ML pipelines, using examples from computer vision, medical imaging, natural language processing, clinical risk prediction based on electronic health records, and medical genomics. Our results show the need to explicitly account for underspecification in modeling pipelines that are intended for real-world deployment in any domain.


The Lasso with general Gaussian designs with applications to hypothesis testing

arXiv.org Machine Learning

The Lasso is a method for high-dimensional regression, which is now commonly used when the number of covariates $p$ is of the same order or larger than the number of observations $n$. Classical asymptotic normality theory is not applicable for this model due to two fundamental reasons: $(1)$ The regularized risk is non-smooth; $(2)$ The distance between the estimator $\bf \widehat{\theta}$ and the true parameters vector $\bf \theta^\star$ cannot be neglected. As a consequence, standard perturbative arguments that are the traditional basis for asymptotic normality fail. On the other hand, the Lasso estimator can be precisely characterized in the regime in which both $n$ and $p$ are large, while $n/p$ is of order one. This characterization was first obtained in the case of standard Gaussian designs, and subsequently generalized to other high-dimensional estimation procedures. Here we extend the same characterization to Gaussian correlated designs with non-singular covariance structure. This characterization is expressed in terms of a simpler ``fixed design'' model. We establish non-asymptotic bounds on the distance between distributions of various quantities in the two models, which hold uniformly over signals $\bf \theta^\star$ in a suitable sparsity class, and values of the regularization parameter. As applications, we study the distribution of the debiased Lasso, and show that a degrees-of-freedom correction is necessary for computing valid confidence intervals.


The Interpolation Phase Transition in Neural Networks: Memorization and Generalization under Lazy Training

arXiv.org Machine Learning

Modern neural networks are often operated in a strongly overparametrized regime: they comprise so many parameters that they can interpolate the training set, even if actual labels are replaced by purely random ones. Despite this, they achieve good prediction error on unseen data: interpolating the training set does not induce overfitting. Further, overparametrization appears to be beneficial in that it simplifies the optimization landscape. Here we study these phenomena in the context of two-layers neural networks in the neural tangent (NT) regime. We consider a simple data model, with isotropic feature vectors in $d$ dimensions, and $N$ hidden neurons. Under the assumption $N \le Cd$ (for $C$ a constant), we show that the network can exactly interpolate the data as soon as the number of parameters is significantly larger than the number of samples: $Nd\gg n$. Under these assumptions, we show that the empirical NT kernel has minimum eigenvalue bounded away from zero, and characterize the generalization error of min-$\ell_2$ norm interpolants, when the target function is linear. In particular, we show that the network approximately performs ridge regression in the raw features, with a strictly positive `self-induced' regularization.


When Do Neural Networks Outperform Kernel Methods?

arXiv.org Machine Learning

For a certain scaling of the initialization of stochastic gradient descent (SGD), wide neural networks (NN) have been shown to be well approximated by reproducing kernel Hilbert space (RKHS) methods. Recent empirical work showed that, for some classification tasks, RKHS methods can replace NNs without a large loss in performance. On the other hand, two-layers NNs are known to encode richer smoothness classes than RKHS and we know of special examples for which SGD-trained NN provably outperform RKHS. This is true even in the wide network limit, for a different scaling of the initialization. How can we reconcile the above claims? For which tasks do NNs outperform RKHS? If feature vectors are nearly isotropic, RKHS methods suffer from the curse of dimensionality, while NNs can overcome it by learning the best low-dimensional representation. Here we show that this curse of dimensionality becomes milder if the feature vectors display the same low-dimensional structure as the target function, and we precisely characterize this tradeoff. Building on these results, we present a model that can capture in a unified framework both behaviors observed in earlier work. We hypothesize that such a latent low-dimensional structure is present in image classification. We test numerically this hypothesis by showing that specific perturbations of the training distribution degrade the performances of RKHS methods much more significantly than NNs.


The generalization error of random features regression: Precise asymptotics and double descent curve

arXiv.org Machine Learning

Deep learning methods operate in regimes that defy the traditional statistical mindset. The neural network architectures often contain more parameters than training samples, and are so rich that they can interpolate the observed labels, even if the latter are replaced by pure noise. Despite their huge complexity, the same architectures achieve small generalization error on real data. This phenomenon has been rationalized in terms of a so-called `double descent' curve. As the model complexity increases, the generalization error follows the usual U-shaped curve at the beginning, first decreasing and then peaking around the interpolation threshold (when the model achieves vanishing training error). However, it descends again as model complexity exceeds this threshold. The global minimum of the generalization error is found in this overparametrized regime, often when the number of parameters is much larger than the number of samples. Far from being a peculiar property of deep neural networks, elements of this behavior have been demonstrated in much simpler settings, including linear regression with random covariates. In this paper we consider the problem of learning an unknown function over the $d$-dimensional sphere $\mathbb S^{d-1}$, from $n$ i.i.d. samples $(\boldsymbol x_i, y_i) \in \mathbb S^{d-1} \times \mathbb R$, $i \le n$. We perform ridge regression on $N$ random features of the form $\sigma(\boldsymbol w_a^{\mathsf T}\boldsymbol x)$, $a \le N$. This can be equivalently described as a two-layers neural network with random first-layer weights. We compute the precise asymptotics of the generalization error, in the limit $N, n, d \to \infty$ with $N/d$ and $n/d$ fixed. This provides the first analytically tractable model that captures all the features of the double descent phenomenon.


Limitations of Lazy Training of Two-layers Neural Networks

arXiv.org Machine Learning

We study the supervised learning problem under either of the following two models: (1) Feature vectors ${\boldsymbol x}_i$ are $d$-dimensional Gaussians and responses are $y_i = f_*({\boldsymbol x}_i)$ for $f_*$ an unknown quadratic function; (2) Feature vectors ${\boldsymbol x}_i$ are distributed as a mixture of two $d$-dimensional centered Gaussians, and $y_i$'s are the corresponding class labels. We use two-layers neural networks with quadratic activations, and compare three different learning regimes: the random features (RF) regime in which we only train the second-layer weights; the neural tangent (NT) regime in which we train a linearization of the neural network around its initialization; the fully trained neural network (NN) regime in which we train all the weights in the network. We prove that, even for the simple quadratic model of point (1), there is a potentially unbounded gap between the prediction risk achieved in these three training regimes, when the number of neurons is smaller than the ambient dimension. When the number of neurons is larger than the number of dimensions, the problem is significantly easier and both NT and NN learning achieve zero risk.


Surprises in High-Dimensional Ridgeless Least Squares Interpolation

arXiv.org Machine Learning

Modern deep learning models involve a huge number of parameters. In nearly all applications of these models, current practice suggests that we should design the network to be sufficiently complex so that the model (as trained, typically, by gradient descent) interpolates the data, i.e., achieves zero training error. Indeed, in a thought-provoking experiment, Zhang et al. (2016) showed that state-of-the-art deep neural network architectures can be trained to interpolate the data even when the actual labels are replaced by entirely random ones. Despite their enormous complexity, deep neural networks are frequently seen to generalize well, in meaningful practical problems. At first sight, this seems to defy conventional statistical wisdom: interpolation (vanishing training error) is usually taken to be a proxy for overfitting or poor generalization (large gap between training and test error). In an insightful series of papers, Belkin et al. (2018b,c,a) pointed out that these concepts are, in general, distinct, and interpolation does not contradict generalization. For example, kernel ridge regression is a relatively well-understood setting in which interpolation can coexist with good generalization (Liang and Rakhlin, 2018). In this paper, we examine the prediction risk of minimum l norm or "ridgeless" least squares regression, under


Mean-field theory of two-layers neural networks: dimension-free bounds and kernel limit

arXiv.org Machine Learning

We consider learning two layer neural networks using stochastic gradient descent. The mean-field description of this learning dynamics approximates the evolution of the network weights by an evolution in the space of probability distributions in $R^D$ (where $D$ is the number of parameters associated to each neuron). This evolution can be defined through a partial differential equation or, equivalently, as the gradient flow in the Wasserstein space of probability distributions. Earlier work shows that (under some regularity assumptions), the mean field description is accurate as soon as the number of hidden units is much larger than the dimension $D$. In this paper we establish stronger and more general approximation guarantees. First of all, we show that the number of hidden units only needs to be larger than a quantity dependent on the regularity properties of the data, and independent of the dimensions. Next, we generalize this analysis to the case of unbounded activation functions, which was not covered by earlier bounds. We extend our results to noisy stochastic gradient descent. Finally, we show that kernel ridge regression can be recovered as a special limit of the mean field analysis.


Contextual Stochastic Block Models

Neural Information Processing Systems

We provide the first information theoretical tight analysis for inference of latent community structure given a sparse graph along with high dimensional node covariates, correlated with the same latent communities. Our work bridges recent theoretical breakthroughs in detection of latent community structure without nodes covariates and a large body of empirical work using diverse heuristics for combining node covariates with graphs for inference. The tightness of our analysis implies in particular, the information theoretic necessity of combining the different sources of information. Our analysis holds for networks of large degrees as well as for a Gaussian version of the model.