Mokhtari, Aryan
Escaping Saddle Points in Constrained Optimization
Mokhtari, Aryan, Ozdaglar, Asuman, Jadbabaie, Ali
In this paper, we study the problem of escaping from saddle points in smooth nonconvex optimization problems subject to a convex set $\mathcal{C}$. We propose a generic framework that yields convergence to a second-order stationary point of the problem, if the convex set $\mathcal{C}$ is simple for a quadratic objective function. Specifically, our results hold if one can find a $\rho$-approximate solution of a quadratic program subject to $\mathcal{C}$ in polynomial time, where $\rho<1$ is a positive constant that depends on the structure of the set $\mathcal{C}$. Under this condition, we show that the sequence of iterates generated by the proposed framework reaches an $(\epsilon,\gamma)$-second order stationary point (SOSP) in at most $\mathcal{O}(\max\{\epsilon^{-2},\rho^{-3}\gamma^{-3}\})$ iterations. We further characterize the overall complexity of reaching an SOSP when the convex set $\mathcal{C}$ can be written as a set of quadratic constraints and the objective function Hessian has a specific structure over the convex $\mathcal{C}$. Finally, we extend our results to the stochastic setting and characterize the number of stochastic gradient and Hessian evaluations to reach an $(\epsilon,\gamma)$-SOSP.
Direct Runge-Kutta Discretization Achieves Acceleration
Zhang, Jingzhao, Mokhtari, Aryan, Sra, Suvrit, Jadbabaie, Ali
We study gradient-based optimization methods obtained by directly discretizing a second-order ordinary differential equation (ODE) related to the continuous limit of Nesterov's accelerated gradient method. When the function is smooth enough, we show that acceleration can be achieved by a stable discretization of this ODE using standard Runge-Kutta integrators. Specifically, we prove that under Lipschitz-gradient, convexity and order-$(s+2)$ differentiability assumptions, the sequence of iterates generated by discretizing the proposed second-order ODE converges to the optimal solution at a rate of $\mathcal{O}({N^{-2\frac{s}{s+1}}})$, where $s$ is the order of the Runge-Kutta numerical integrator. Furthermore, we introduce a new local flatness condition on the objective, under which rates even faster than $\mathcal{O}(N^{-2})$ can be achieved with low-order integrators and only gradient information. Notably, this flatness condition is satisfied by several standard loss functions used in machine learning. We provide numerical experiments that verify the theoretical rates predicted by our results.
Escaping Saddle Points in Constrained Optimization
Mokhtari, Aryan, Ozdaglar, Asuman, Jadbabaie, Ali
In this paper, we study the problem of escaping from saddle points in smooth nonconvex optimization problems subject to a convex set $\mathcal{C}$. We propose a generic framework that yields convergence to a second-order stationary point of the problem, if the convex set $\mathcal{C}$ is simple for a quadratic objective function. Specifically, our results hold if one can find a $\rho$-approximate solution of a quadratic program subject to $\mathcal{C}$ in polynomial time, where $\rho<1$ is a positive constant that depends on the structure of the set $\mathcal{C}$. Under this condition, we show that the sequence of iterates generated by the proposed framework reaches an $(\epsilon,\gamma)$-second order stationary point (SOSP) in at most $\mathcal{O}(\max\{\epsilon^{-2},\rho^{-3}\gamma^{-3}\})$ iterations. We further characterize the overall complexity of reaching an SOSP when the convex set $\mathcal{C}$ can be written as a set of quadratic constraints and the objective function Hessian has a specific structure over the convex $\mathcal{C}$. Finally, we extend our results to the stochastic setting and characterize the number of stochastic gradient and Hessian evaluations to reach an $(\epsilon,\gamma)$-SOSP.
Direct Runge-Kutta Discretization Achieves Acceleration
Zhang, Jingzhao, Mokhtari, Aryan, Sra, Suvrit, Jadbabaie, Ali
We study gradient-based optimization methods obtained by directly discretizing a second-order ordinary differential equation (ODE) related to the continuous limit of Nesterov's accelerated gradient method. When the function is smooth enough, we show that acceleration can be achieved by a stable discretization of this ODE using standard Runge-Kutta integrators. Specifically, we prove that under Lipschitz-gradient, convexity and order-$(s+2)$ differentiability assumptions, the sequence of iterates generated by discretizing the proposed second-order ODE converges to the optimal solution at a rate of $\mathcal{O}({N^{-2\frac{s}{s+1}}})$, where $s$ is the order of the Runge-Kutta numerical integrator. Furthermore, we introduce a new local flatness condition on the objective, under which rates even faster than $\mathcal{O}(N^{-2})$ can be achieved with low-order integrators and only gradient information. Notably, this flatness condition is satisfied by several standard loss functions used in machine learning. We provide numerical experiments that verify the theoretical rates predicted by our results.
Efficient Distributed Hessian Free Algorithm for Large-scale Empirical Risk Minimization via Accumulating Sample Strategy
Jahani, Majid, He, Xi, Ma, Chenxin, Mokhtari, Aryan, Mudigere, Dheevatsa, Ribeiro, Alejandro, Takรกฤ, Martin
In this paper, we propose a Distributed Accumulated Newton Conjugate gradiEnt (DANCE) method in which sample size is gradually increasing to quickly obtain a solution whose empirical loss is under satisfactory statistical accuracy. Our proposed method is multistage in which the solution of a stage serves as a warm start for the next stage which contains more samples (including the samples in the previous stage). The proposed multistage algorithm reduces the number of passes over data to achieve the statistical accuracy of the full training set. Moreover, our algorithm in nature is easy to be distributed and shares the strong scaling property indicating that acceleration is always expected by using more computing nodes. Various iteration complexity results regarding descent direction computation, communication efficiency and stopping criteria are analyzed under convex setting. Our numerical results illustrate that the proposed method outperforms other comparable methods for solving learning problems including neural networks.
Escaping Saddle Points in Constrained Optimization
Mokhtari, Aryan, Ozdaglar, Asuman, Jadbabaie, Ali
In this paper, we focus on escaping from saddle points in smooth nonconvex optimization problems subject to a convex set $\mathcal{C}$. We propose a generic framework that yields convergence to a second-order stationary point of the problem, if the convex set $\mathcal{C}$ is simple for a quadratic objective function. To be more precise, our results hold if one can find a $\rho$-approximate solution of a quadratic program subject to $\mathcal{C}$ in polynomial time, where $\rho<1$ is a positive constant that depends on the structure of the set $\mathcal{C}$. Under this condition, we show that the sequence of iterates generated by the proposed framework reaches an $(\epsilon,\gamma)$-second order stationary point (SOSP) in at most $\mathcal{O}(\max\{\epsilon^{-2},\rho^{-3}\gamma^{-3}\})$ iterations. We further characterize the overall arithmetic operations to reach an SOSP when the convex set $\mathcal{C}$ can be written as a set of quadratic constraints. Finally, we extend our results to the stochastic setting and characterize the number of stochastic gradient and Hessian evaluations to reach an $(\epsilon,\gamma)$-SOSP.
Quantized Decentralized Consensus Optimization
Reisizadeh, Amirhossein, Mokhtari, Aryan, Hassani, Hamed, Pedarsani, Ramtin
We consider the problem of decentralized consensus optimization, where the sum of $n$ convex functions are minimized over $n$ distributed agents that form a connected network. In particular, we consider the case that the communicated local decision variables among nodes are quantized in order to alleviate the communication bottleneck in distributed optimization. We propose the Quantized Decentralized Gradient Descent (QDGD) algorithm, in which nodes update their local decision variables by combining the quantized information received from their neighbors with their local information. We prove that under standard strong convexity and smoothness assumptions for the objective function, QDGD achieves a vanishing mean solution error. To the best of our knowledge, this is the first algorithm that achieves vanishing consensus error in the presence of quantization noise. Moreover, we provide simulation results that show tight agreement between our derived theoretical convergence rate and the experimental results.
Towards More Efficient Stochastic Decentralized Learning: Faster Convergence and Sparse Communication
Shen, Zebang, Mokhtari, Aryan, Zhou, Tengfei, Zhao, Peilin, Qian, Hui
Recently, the decentralized optimization problem is attracting growing attention. Most existing methods are deterministic with high per-iteration cost and have a convergence rate quadratically depending on the problem condition number. Besides, the dense communication is necessary to ensure the convergence even if the dataset is sparse. In this paper, we generalize the decentralized optimization problem to a monotone operator root finding problem, and propose a stochastic algorithm named DSBA that (i) converges geometrically with a rate linearly depending on the problem condition number, and (ii) can be implemented using sparse communication only. Additionally, DSBA handles learning problems like AUC-maximization which cannot be tackled efficiently in the decentralized setting. Experiments on convex minimization and AUC-maximization validate the efficiency of our method.
Direct Runge-Kutta Discretization Achieves Acceleration
Zhang, Jingzhao, Mokhtari, Aryan, Sra, Suvrit, Jadbabaie, Ali
We study gradient-based optimization methods obtained by directly discretizing a second-order ordinary differential equation (ODE) related to the continuous limit of Nesterov's accelerated gradient method. When the function is smooth enough, we show that acceleration can be achieved by a stable discretization of the ODE using standard Runge-Kutta integrators. Specifically, we prove that under Lipschitz-gradient, convexity and order-$(s+2)$ differentiability assumptions, the sequence of iterates generated by discretizing the proposed second-order ODE converges to the optimal solution at a rate of $\mathcal{O}({N^{-2\frac{s}{s+1}}})$, where $s$ is the order of the Runge-Kutta numerical integrator. By increasing $s$, the convergence rate of our method approaches the optimal rate of $\mathcal{O}({N^{-2}})$. Furthermore, we introduce a new local flatness condition on the objective, according to which rates even faster than $\mathcal{O}(N^{-2})$ can be achieved with low-order integrators and only gradient information. Notably, this flatness condition is satisfied by several standard loss functions used in machine learning, and it may be of broader independent interest. We provide numerical experiments that verify the theoretical rates predicted by our results.
Stochastic Conditional Gradient Methods: From Convex Minimization to Submodular Maximization
Mokhtari, Aryan, Hassani, Hamed, Karbasi, Amin
This paper considers stochastic optimization problems for a large class of objective functions, including convex and continuous submodular. Stochastic proximal gradient methods have been widely used to solve such problems; however, their applicability remains limited when the problem dimension is large and the projection onto a convex set is costly. Instead, stochastic conditional gradient methods are proposed as an alternative solution relying on (i) Approximating gradients via a simple averaging technique requiring a single stochastic gradient evaluation per iteration; (ii) Solving a linear program to compute the descent/ascent direction. The averaging technique reduces the noise of gradient approximations as time progresses, and replacing projection step in proximal methods by a linear program lowers the computational complexity of each iteration. We show that under convexity and smoothness assumptions, our proposed method converges to the optimal objective function value at a sublinear rate of $O(1/t^{1/3})$. Further, for a monotone and continuous DR-submodular function and subject to a general convex body constraint, we prove that our proposed method achieves a $((1-1/e)OPT-\eps)$ guarantee with $O(1/\eps^3)$ stochastic gradient computations. This guarantee matches the known hardness results and closes the gap between deterministic and stochastic continuous submodular maximization. Additionally, we obtain $((1/e)OPT -\eps)$ guarantee after using $O(1/\eps^3)$ stochastic gradients for the case that the objective function is continuous DR-submodular but non-monotone and the constraint set is down-closed. By using stochastic continuous optimization as an interface, we provide the first $(1-1/e)$ tight approximation guarantee for maximizing a monotone but stochastic submodular set function subject to a matroid constraint and $(1/e)$ approximation guarantee for the non-monotone case.