Goto

Collaborating Authors

 Mokhtari, Aryan


An Accelerated Gradient Method for Simple Bilevel Optimization with Convex Lower-level Problem

arXiv.org Machine Learning

In this paper, we focus on simple bilevel optimization problems, where we minimize a convex smooth objective function over the optimal solution set of another convex smooth constrained optimization problem. We present a novel bilevel optimization method that locally approximates the solution set of the lower-level problem using a cutting plane approach and employs an accelerated gradient-based update to reduce the upper-level objective function over the approximated solution set. We measure the performance of our method in terms of suboptimality and infeasibility errors and provide non-asymptotic convergence guarantees for both error criteria. Specifically, when the feasible set is compact, we show that our method requires at most $\mathcal{O}(\max\{1/\sqrt{\epsilon_{f}}, 1/\epsilon_g\})$ iterations to find a solution that is $\epsilon_f$-suboptimal and $\epsilon_g$-infeasible. Moreover, under the additional assumption that the lower-level objective satisfies the $r$-th H\"olderian error bound, we show that our method achieves an iteration complexity of $\mathcal{O}(\max\{\epsilon_{f}^{-\frac{2r-1}{2r}},\epsilon_{g}^{-\frac{2r-1}{2r}}\})$, which matches the optimal complexity of single-level convex constrained optimization when $r=1$.


Krylov Cubic Regularized Newton: A Subspace Second-Order Method with Dimension-Free Convergence Rate

arXiv.org Machine Learning

Second-order optimization methods, such as cubic regularized Newton methods, are known for their rapid convergence rates; nevertheless, they become impractical in high-dimensional problems due to their substantial memory requirements and computational costs. One promising approach is to execute second-order updates within a lower-dimensional subspace, giving rise to subspace second-order methods. However, the majority of existing subspace second-order methods randomly select subspaces, consequently resulting in slower convergence rates depending on the problem's dimension $d$. In this paper, we introduce a novel subspace cubic regularized Newton method that achieves a dimension-independent global convergence rate of ${O}\left(\frac{1}{mk}+\frac{1}{k^2}\right)$ for solving convex optimization problems. Here, $m$ represents the subspace dimension, which can be significantly smaller than $d$. Instead of adopting a random subspace, our primary innovation involves performing the cubic regularized Newton update within the Krylov subspace associated with the Hessian and the gradient of the objective function. This result marks the first instance of a dimension-independent convergence rate for a subspace second-order method. Furthermore, when specific spectral conditions of the Hessian are met, our method recovers the convergence rate of a full-dimensional cubic regularized Newton method. Numerical experiments show our method converges faster than existing random subspace methods, especially for high-dimensional problems.


Limited-Memory Greedy Quasi-Newton Method with Non-asymptotic Superlinear Convergence Rate

arXiv.org Machine Learning

Non-asymptotic convergence analysis of quasi-Newton methods has gained attention with a landmark result establishing an explicit local superlinear rate of O$((1/\sqrt{t})^t)$. The methods that obtain this rate, however, exhibit a well-known drawback: they require the storage of the previous Hessian approximation matrix or all past curvature information to form the current Hessian inverse approximation. Limited-memory variants of quasi-Newton methods such as the celebrated L-BFGS alleviate this issue by leveraging a limited window of past curvature information to construct the Hessian inverse approximation. As a result, their per iteration complexity and storage requirement is O$(\tau d)$ where $\tau\le d$ is the size of the window and $d$ is the problem dimension reducing the O$(d^2)$ computational cost and memory requirement of standard quasi-Newton methods. However, to the best of our knowledge, there is no result showing a non-asymptotic superlinear convergence rate for any limited-memory quasi-Newton method. In this work, we close this gap by presenting a Limited-memory Greedy BFGS (LG-BFGS) method that can achieve an explicit non-asymptotic superlinear rate. We incorporate displacement aggregation, i.e., decorrelating projection, in post-processing gradient variations, together with a basis vector selection scheme on variable variations, which greedily maximizes a progress measure of the Hessian estimate to the true Hessian. Their combination allows past curvature information to remain in a sparse subspace while yielding a valid representation of the full history. Interestingly, our established non-asymptotic superlinear convergence rate demonstrates an explicit trade-off between the convergence speed and memory requirement, which to our knowledge, is the first of its kind. Numerical results corroborate our theoretical findings and demonstrate the effectiveness of our method.


Projection-Free Methods for Stochastic Simple Bilevel Optimization with Convex Lower-level Problem

arXiv.org Artificial Intelligence

In this paper, we study a class of stochastic bilevel optimization problems, also known as stochastic simple bilevel optimization, where we minimize a smooth stochastic objective function over the optimal solution set of another stochastic convex optimization problem. We introduce novel stochastic bilevel optimization methods that locally approximate the solution set of the lower-level problem via a stochastic cutting plane, and then run a conditional gradient update with variance reduction techniques to control the error induced by using stochastic gradients. For the case that the upper-level function is convex, our method requires $\tilde{\mathcal{O}}(\max\{1/\epsilon_f^{2},1/\epsilon_g^{2}\}) $ stochastic oracle queries to obtain a solution that is $\epsilon_f$-optimal for the upper-level and $\epsilon_g$-optimal for the lower-level. This guarantee improves the previous best-known complexity of $\mathcal{O}(\max\{1/\epsilon_f^{4},1/\epsilon_g^{4}\})$. Moreover, for the case that the upper-level function is non-convex, our method requires at most $\tilde{\mathcal{O}}(\max\{1/\epsilon_f^{3},1/\epsilon_g^{3}\}) $ stochastic oracle queries to find an $(\epsilon_f, \epsilon_g)$-stationary point. In the finite-sum setting, we show that the number of stochastic oracle calls required by our method are $\tilde{\mathcal{O}}(\sqrt{n}/\epsilon)$ and $\tilde{\mathcal{O}}(\sqrt{n}/\epsilon^{2})$ for the convex and non-convex settings, respectively, where $\epsilon=\min \{\epsilon_f,\epsilon_g\}$.


Online Learning Guided Curvature Approximation: A Quasi-Newton Method with Global Non-Asymptotic Superlinear Convergence

arXiv.org Artificial Intelligence

Quasi-Newton algorithms are among the most popular iterative methods for solving unconstrained minimization problems, largely due to their favorable superlinear convergence property. However, existing results for these algorithms are limited as they provide either (i) a global convergence guarantee with an asymptotic superlinear convergence rate, or (ii) a local non-asymptotic superlinear rate for the case that the initial point and the initial Hessian approximation are chosen properly. In particular, no current analysis for quasi-Newton methods guarantees global convergence with an explicit superlinear convergence rate. In this paper, we close this gap and present the first globally convergent quasi-Newton method with an explicit non-asymptotic superlinear convergence rate. Unlike classical quasi-Newton methods, we build our algorithm upon the hybrid proximal extragradient method and propose a novel online learning framework for updating the Hessian approximation matrices. Specifically, guided by the convergence analysis, we formulate the Hessian approximation update as an online convex optimization problem in the space of matrices, and we relate the bounded regret of the online problem to the superlinear convergence of our method.


Provable Multi-Task Representation Learning by Two-Layer ReLU Neural Networks

arXiv.org Artificial Intelligence

Feature learning, i.e. extracting meaningful representations of data, is quintessential to the practical success of neural networks trained with gradient descent, yet it is notoriously difficult to explain how and why it occurs. Recent theoretical studies have shown that shallow neural networks optimized on a single task with gradient-based methods can learn meaningful features, extending our understanding beyond the neural tangent kernel or random feature regime in which negligible feature learning occurs. But in practice, neural networks are increasingly often trained on {\em many} tasks simultaneously with differing loss functions, and these prior analyses do not generalize to such settings. In the multi-task learning setting, a variety of studies have shown effective feature learning by simple linear models. However, multi-task learning via {\em nonlinear} models, arguably the most common learning paradigm in practice, remains largely mysterious. In this work, we present the first results proving feature learning occurs in a multi-task setting with a nonlinear model. We show that when the tasks are binary classification problems with labels depending on only $r$ directions within the ambient $d\gg r$-dimensional input space, executing a simple gradient-based multitask learning algorithm on a two-layer ReLU neural network learns the ground-truth $r$ directions. In particular, any downstream task on the $r$ ground-truth coordinates can be solved by learning a linear classifier with sample and neuron complexity independent of the ambient dimension $d$, while a random feature model requires exponential complexity in $d$ for such a guarantee.


Greedy Pruning with Group Lasso Provably Generalizes for Matrix Sensing

arXiv.org Artificial Intelligence

Pruning schemes have been widely used in practice to reduce the complexity of trained models with a massive number of parameters. In fact, several practical studies have shown that if a pruned model is fine-tuned with some gradient-based updates it generalizes well to new samples. Although the above pipeline, which we refer to as pruning + fine-tuning, has been extremely successful in lowering the complexity of trained models, there is very little known about the theory behind this success. In this paper, we address this issue by investigating the pruning + fine-tuning framework on the overparameterized matrix sensing problem with the ground truth $U_\star \in \mathbb{R}^{d \times r}$ and the overparameterized model $U \in \mathbb{R}^{d \times k}$ with $k \gg r$. We study the approximate local minima of the mean square error, augmented with a smooth version of a group Lasso regularizer, $\sum_{i=1}^k \| U e_i \|_2$. In particular, we provably show that pruning all the columns below a certain explicit $\ell_2$-norm threshold results in a solution $U_{\text{prune}}$ which has the minimum number of columns $r$, yet close to the ground truth in training loss. Moreover, in the subsequent fine-tuning phase, gradient descent initialized at $U_{\text{prune}}$ converges at a linear rate to its limit. While our analysis provides insights into the role of regularization in pruning, we also show that running gradient descent in the absence of regularization results in models which {are not suitable for greedy pruning}, i.e., many columns could have their $\ell_2$ norm comparable to that of the maximum. To the best of our knowledge, our results provide the first rigorous insights on why greedy pruning + fine-tuning leads to smaller models which also generalize well.


MAML and ANIL Provably Learn Representations

arXiv.org Artificial Intelligence

Recent empirical evidence has driven conventional wisdom to believe that gradient-based meta-learning (GBML) methods perform well at few-shot learning because they learn an expressive data representation that is shared across tasks. However, the mechanics of GBML have remained largely mysterious from a theoretical perspective. In this paper, we prove that two well-known GBML methods, MAML and ANIL, as well as their first-order approximations, are capable of learning common representation among a set of given tasks. Specifically, in the well-known multi-task linear representation learning setting, they are able to recover the ground-truth representation at an exponentially fast rate. Moreover, our analysis illuminates that the driving force causing MAML and ANIL to recover the underlying representation is that they adapt the final layer of their model, which harnesses the underlying task diversity to improve the representation in all directions of interest. To the best of our knowledge, these are the first results to show that MAML and/or ANIL learn expressive representations and to rigorously explain why they do so.


Accelerated Quasi-Newton Proximal Extragradient: Faster Rate for Smooth Convex Optimization

arXiv.org Artificial Intelligence

In this paper, we propose an accelerated quasi-Newton proximal extragradient (A-QPNE) method for solving unconstrained smooth convex optimization problems. With access only to the gradients of the objective, we prove that our method can achieve a convergence rate of ${O}\bigl(\min\{\frac{1}{k^2}, \frac{\sqrt{d\log k}}{k^{2.5}}\}\bigr)$, where $d$ is the problem dimension and $k$ is the number of iterations. In particular, in the regime where $k = {O}(d)$, our method matches the optimal rate of ${O}(\frac{1}{k^2})$ by Nesterov's accelerated gradient (NAG). Moreover, in the the regime where $k = \Omega(d \log d)$, it outperforms NAG and converges at a faster rate of ${O}\bigl(\frac{\sqrt{d\log k}}{k^{2.5}}\bigr)$. To the best of our knowledge, this result is the first to demonstrate a provable gain of a quasi-Newton-type method over NAG in the convex setting. To achieve such results, we build our method on a recent variant of the Monteiro-Svaiter acceleration framework and adopt an online learning perspective to update the Hessian approximation matrices, in which we relate the convergence rate of our method to the dynamic regret of a specific online convex optimization problem in the space of matrices.


A Conditional Gradient-based Method for Simple Bilevel Optimization with Convex Lower-level Problem

arXiv.org Artificial Intelligence

In this paper, we study a class of bilevel optimization problems, also known as simple bilevel optimization, where we minimize a smooth objective function over the optimal solution set of another convex constrained optimization problem. Several iterative methods have been developed for tackling this class of problems. Alas, their convergence guarantees are either asymptotic for the upper-level objective, or the convergence rates are slow and sub-optimal. To address this issue, in this paper, we introduce a novel bilevel optimization method that locally approximates the solution set of the lower-level problem via a cutting plane, and then runs a conditional gradient update to decrease the upper-level objective. When the upper-level objective is convex, we show that our method requires ${\mathcal{O}}(\max\{1/\epsilon_f,1/\epsilon_g\})$ iterations to find a solution that is $\epsilon_f$-optimal for the upper-level objective and $\epsilon_g$-optimal for the lower-level objective. Moreover, when the upper-level objective is non-convex, our method requires ${\mathcal{O}}(\max\{1/\epsilon_f^2,1/(\epsilon_f\epsilon_g)\})$ iterations to find an $(\epsilon_f,\epsilon_g)$-optimal solution. We also prove stronger convergence guarantees under the H\"olderian error bound assumption on the lower-level problem. To the best of our knowledge, our method achieves the best-known iteration complexity for the considered class of bilevel problems.