Not enough data to create a plot.
Try a different view from the menu above.
Mohamed, Emad
Automating Sonologists USG Commands with AI and Voice Interface
Mohamed, Emad, Tiwari, Shruti, Pravin, Sheena Christabel
This research presents an advanced AI-powered ultrasound imaging system that incorporates real-time image processing, organ tracking, and voice commands to enhance the efficiency and accuracy of diagnoses in clinical practice. Traditional ultrasound diagnostics often require significant time and introduce a degree of subjectivity due to user interaction. The goal of this innovative solution is to provide Sonologists with a more predictable and productive imaging procedure utilizing artificial intelligence, computer vision, and voice technology. The functionality of the system employs computer vision and deep learning algorithms, specifically adopting the Mask R-CNN model from Detectron2 for semantic segmentation of organs and key landmarks. This automation improves diagnostic accuracy by enabling the extraction of valuable information with minimal human input. Additionally, it includes a voice recognition feature that allows for hands-free operation, enabling users to control the system with commands such as freeze or liver, all while maintaining their focus on the patient. The architecture comprises video processing and real-time segmentation modules that prepare the system to perform essential imaging functions, such as freezing and zooming in on frames. The liver histopathology module, optimized for detecting fibrosis, achieved an impressive accuracy of 98.6%. Furthermore, the organ segmentation module produces output confidence levels between 50% and 95%, demonstrating its efficacy in organ detection.
A Semi-supervised Approach for a Better Translation of Sentiment in Dialectical Arabic UGT
Saadany, Hadeel, Orasan, Constantin, Mohamed, Emad, Tantawy, Ashraf
In the online world, Machine Translation (MT) systems are extensively used to translate User-Generated Text (UGT) such as reviews, tweets, and social media posts, where the main message is often the author's positive or negative attitude towards the topic of the text. However, MT systems still lack accuracy in some low-resource languages and sometimes make critical translation errors that completely flip the sentiment polarity of the target word or phrase and hence delivers a wrong affect message. This is particularly noticeable in texts that do not follow common lexico-grammatical standards such as the dialectical Arabic (DA) used on online platforms. In this research, we aim to improve the translation of sentiment in UGT written in the dialectical versions of the Arabic language to English. Given the scarcity of gold-standard parallel data for DA-EN in the UGT domain, we introduce a semi-supervised approach that exploits both monolingual and parallel data for training an NMT system initialised by a cross-lingual language model trained with supervised and unsupervised modeling objectives. We assess the accuracy of sentiment translation by our proposed system through a numerical 'sentiment-closeness' measure as well as human evaluation. We will show that our semi-supervised MT system can significantly help with correcting sentiment errors detected in the online translation of dialectical Arabic UGT.