Plotting

 Mittal, Anshul


Qualitative Insights Tool (QualIT): LLM Enhanced Topic Modeling

arXiv.org Artificial Intelligence

Topic modeling is a widely used technique for uncovering thematic structures from large text corpora. However, most topic modeling approaches e.g. Latent Dirichlet Allocation (LDA) struggle to capture nuanced semantics and contextual understanding required to accurately model complex narratives. Recent advancements in this area include methods like BERTopic, which have demonstrated significantly improved topic coherence and thus established a new standard for benchmarking. In this paper, we present a novel approach, the Qualitative Insights Tool (QualIT) that integrates large language models (LLMs) with existing clustering-based topic modeling approaches. Our method leverages the deep contextual understanding and powerful language generation capabilities of LLMs to enrich the topic modeling process using clustering. We evaluate our approach on a large corpus of news articles and demonstrate substantial improvements in topic coherence and topic diversity compared to baseline topic modeling techniques. On the 20 ground-truth topics, our method shows 70% topic coherence (vs 65% & 57% benchmarks) and 95.5% topic diversity (vs 85% & 72% benchmarks). Our findings suggest that the integration of LLMs can unlock new opportunities for topic modeling of dynamic and complex text data, as is common in talent management research contexts.


Graph Regularized Encoder Training for Extreme Classification

arXiv.org Artificial Intelligence

Deep extreme classification (XC) aims to train an encoder architecture and an accompanying classifier architecture to tag a data point with the most relevant subset of labels from a very large universe of labels. XC applications in ranking, recommendation and tagging routinely encounter tail labels for which the amount of training data is exceedingly small. Graph convolutional networks (GCN) present a convenient but computationally expensive way to leverage task metadata and enhance model accuracies in these settings. This paper formally establishes that in several use cases, the steep computational cost of GCNs is entirely avoidable by replacing GCNs with non-GCN architectures. The paper notices that in these settings, it is much more effective to use graph data to regularize encoder training than to implement a GCN. Based on these insights, an alternative paradigm RAMEN is presented to utilize graph metadata in XC settings that offers significant performance boosts with zero increase in inference computational costs. RAMEN scales to datasets with up to 1M labels and offers prediction accuracy up to 15% higher on benchmark datasets than state of the art methods, including those that use graph metadata to train GCNs. RAMEN also offers 10% higher accuracy over the best baseline on a proprietary recommendation dataset sourced from click logs of a popular search engine. Code for RAMEN will be released publicly.


EHI: End-to-end Learning of Hierarchical Index for Efficient Dense Retrieval

arXiv.org Artificial Intelligence

Dense embedding-based retrieval is now the industry standard for semantic search and ranking problems, like obtaining relevant web documents for a given query. Such techniques use a two-stage process: (a) contrastive learning to train a dual encoder to embed both the query and documents and (b) approximate nearest neighbor search (ANNS) for finding similar documents for a given query. These two stages are disjoint; the learned embeddings might be ill-suited for the ANNS method and vice-versa, leading to suboptimal performance. In this work, we propose End-to-end Hierarchical Indexing -- EHI -- that jointly learns both the embeddings and the ANNS structure to optimize retrieval performance. EHI uses a standard dual encoder model for embedding queries and documents while learning an inverted file index (IVF) style tree structure for efficient ANNS. To ensure stable and efficient learning of discrete tree-based ANNS structure, EHI introduces the notion of dense path embedding that captures the position of a query/document in the tree. We demonstrate the effectiveness of EHI on several benchmarks, including de-facto industry standard MS MARCO (Dev set and TREC DL19) datasets. For example, with the same compute budget, EHI outperforms state-of-the-art (SOTA) in by 0.6% (MRR@10) on MS MARCO dev set and by 4.2% (nDCG@10) on TREC DL19 benchmarks.