Goto

Collaborating Authors

 Mitliagkas, Ioannis


Expecting The Unexpected: Towards Broad Out-Of-Distribution Detection

arXiv.org Artificial Intelligence

Improving the reliability of deployed machine learning systems often involves developing methods to detect out-of-distribution (OOD) inputs. However, existing research often narrowly focuses on samples from classes that are absent from the training set, neglecting other types of plausible distribution shifts. This limitation reduces the applicability of these methods in real-world scenarios, where systems encounter a wide variety of anomalous inputs. In this study, we categorize five distinct types of distribution shifts and critically evaluate the performance of recent OOD detection methods on each of them. We publicly release our benchmark under the name BROAD (Benchmarking Resilience Over Anomaly Diversity). Our findings reveal that while these methods excel in detecting unknown classes, their performance is inconsistent when encountering other types of distribution shifts. In other words, they only reliably detect unexpected inputs that they have been specifically designed to expect. As a first step toward broad OOD detection, we learn a generative model of existing detection scores with a Gaussian mixture. By doing so, we present an ensemble approach that offers a more consistent and comprehensive solution for broad OOD detection, demonstrating superior performance compared to existing methods. Our code to download BROAD and reproduce our experiments is publicly available.


CADet: Fully Self-Supervised Out-Of-Distribution Detection With Contrastive Learning

arXiv.org Artificial Intelligence

Handling out-of-distribution (OOD) samples has become a major stake in the real-world deployment of machine learning systems. This work explores the use of self-supervised contrastive learning to the simultaneous detection of two types of OOD samples: unseen classes and adversarial perturbations. First, we pair self-supervised contrastive learning with the maximum mean discrepancy (MMD) two-sample test. This approach enables us to robustly test whether two independent sets of samples originate from the same distribution, and we demonstrate its effectiveness by discriminating between CIFAR-10 and CIFAR-10.1 with higher confidence than previous work. Motivated by this success, we introduce CADet (Contrastive Anomaly Detection), a novel method for OOD detection of single samples. CADet draws inspiration from MMD, but leverages the similarity between contrastive transformations of a same sample. CADet outperforms existing adversarial detection methods in identifying adversarially perturbed samples on ImageNet and achieves comparable performance to unseen label detection methods on two challenging benchmarks: ImageNet-O and iNaturalist. Significantly, CADet is fully self-supervised and requires neither labels for in-distribution samples nor access to OOD examples.


Towards Out-of-Distribution Adversarial Robustness

arXiv.org Artificial Intelligence

Adversarial robustness continues to be a major challenge for deep learning. A core issue is that robustness to one type of attack often fails to transfer to other attacks. While prior work establishes a theoretical trade-off in robustness against different $L_p$ norms, we show that there is potential for improvement against many commonly used attacks by adopting a domain generalisation approach. Concretely, we treat each type of attack as a domain, and apply the Risk Extrapolation method (REx), which promotes similar levels of robustness against all training attacks. Compared to existing methods, we obtain similar or superior worst-case adversarial robustness on attacks seen during training. Moreover, we achieve superior performance on families or tunings of attacks only encountered at test time. On ensembles of attacks, our approach improves the accuracy from 3.4% with the best existing baseline to 25.9% on MNIST, and from 16.9% to 23.5% on CIFAR10.


LEAD: Min-Max Optimization from a Physical Perspective

arXiv.org Artificial Intelligence

Adversarial formulations such as generative adversarial networks (GANs) have rekindled interest in two-player min-max games. A central obstacle in the optimization of such games is the rotational dynamics that hinder their convergence. In this paper, we show that game optimization shares dynamic properties with particle systems subject to multiple forces, and one can leverage tools from physics to improve optimization dynamics. Inspired by the physical framework, we propose LEAD, an optimizer for min-max games. Next, using Lyapunov stability theory and spectral analysis, we study LEAD's convergence properties in continuous and discrete time settings for a class of quadratic min-max games to demonstrate linear convergence to the Nash equilibrium. Finally, we empirically evaluate our method on synthetic setups and CIFAR-10 image generation to demonstrate improvements in GAN training.


No Wrong Turns: The Simple Geometry Of Neural Networks Optimization Paths

arXiv.org Artificial Intelligence

Understanding the optimization dynamics of neural networks is necessary for closing the gap between theory and practice. Stochastic first-order optimization algorithms are known to efficiently locate favorable minima in deep neural networks. This efficiency, however, contrasts with the non-convex and seemingly complex structure of neural loss landscapes. In this study, we delve into the fundamental geometric properties of sampled gradients along optimization paths. We focus on two key quantities, which appear in the restricted secant inequality and error bound. Both hold high significance for first-order optimization. Our analysis reveals that these quantities exhibit predictable, consistent behavior throughout training, despite the stochasticity induced by sampling minibatches. Our findings suggest that not only do optimization trajectories never encounter significant obstacles, but they also maintain stable dynamics during the majority of training. These observed properties are sufficiently expressive to theoretically guarantee linear convergence and prescribe learning rate schedules mirroring empirical practices. We conduct our experiments on image classification, semantic segmentation and language modeling across different batch sizes, network architectures, datasets, optimizers, and initialization seeds. We discuss the impact of each factor. Our work provides novel insights into the properties of neural network loss functions, and opens the door to theoretical frameworks more relevant to prevalent practice.


Empirical Analysis of Model Selection for Heterogeneous Causal Effect Estimation

arXiv.org Artificial Intelligence

We study the problem of model selection in causal inference, specifically for the case of conditional average treatment effect (CATE) estimation under binary treatments. Unlike model selection in machine learning, there is no perfect analogue of cross-validation as we do not observe the counterfactual potential outcome for any data point. Towards this, there have been a variety of proxy metrics proposed in the literature, that depend on auxiliary nuisance models estimated from the observed data (propensity score model, outcome regression model). However, the effectiveness of these metrics has only been studied on synthetic datasets as we can access the counterfactual data for them. We conduct an extensive empirical analysis to judge the performance of these metrics introduced in the literature, and novel ones introduced in this work, where we utilize the latest advances in generative modeling to incorporate multiple realistic datasets. Our analysis suggests novel model selection strategies based on careful hyperparameter tuning of CATE estimators and causal ensembling.


Synergies between Disentanglement and Sparsity: Generalization and Identifiability in Multi-Task Learning

arXiv.org Artificial Intelligence

Although disentangled representations are often said to be beneficial for downstream tasks, current empirical and theoretical understanding is limited. In this work, we provide evidence that disentangled representations coupled with sparse base-predictors improve generalization. In the context of multi-task learning, we prove a new identifiability result that provides conditions under which maximally sparse base-predictors yield disentangled representations. Motivated by this theoretical result, we propose a practical approach to learn disentangled representations based on a sparsity-promoting bi-level optimization problem. Finally, we explore a meta-learning version of this algorithm based on group Lasso multiclass SVM base-predictors, for which we derive a tractable dual formulation. It obtains competitive results on standard few-shot classification benchmarks, while each task is using only a fraction of the learned representations.


Empirical Study on Optimizer Selection for Out-of-Distribution Generalization

arXiv.org Artificial Intelligence

Modern deep learning systems do not generalize well when the test data distribution is slightly different to the training data distribution. While much promising work has been accomplished to address this fragility, a systematic study of the role of optimizers and their out-of-distribution generalization performance has not been undertaken. In this study, we examine the performance of popular first-order optimizers for different classes of distributional shift under empirical risk minimization and invariant risk minimization. We address this question for image and text classification using DomainBed, WILDS, and Backgrounds Challenge as testbeds for studying different types of shifts -- namely correlation and diversity shift. We search over a wide range of hyperparameters and examine classification accuracy (in-distribution and out-of-distribution) for over 20,000 models. We arrive at the following findings, which we expect to be helpful for practitioners: i) adaptive optimizers (e.g., Adam) perform worse than non-adaptive optimizers (e.g., SGD, momentum SGD) on out-of-distribution performance. In particular, even though there is no significant difference in in-distribution performance, we show a measurable difference in out-of-distribution performance. ii) in-distribution performance and out-of-distribution performance exhibit three types of behavior depending on the dataset -- linear returns, increasing returns, and diminishing returns. For example, in the training of natural language data using Adam, fine-tuning the performance of in-distribution performance does not significantly contribute to the out-of-distribution generalization performance.


Stochastic Mirror Descent: Convergence Analysis and Adaptive Variants via the Mirror Stochastic Polyak Stepsize

arXiv.org Artificial Intelligence

We investigate the convergence of stochastic mirror descent (SMD) under interpolation in relatively smooth and smooth convex optimization. In relatively smooth convex optimization we provide new convergence guarantees for SMD with a constant stepsize. For smooth convex optimization we propose a new adaptive stepsize scheme -- the mirror stochastic Polyak stepsize (mSPS). Notably, our convergence results in both settings do not make bounded gradient assumptions or bounded variance assumptions, and we show convergence to a neighborhood that vanishes under interpolation. Consequently, these results correspond to the first convergence guarantees under interpolation for the exponentiated gradient algorithm for fixed or adaptive stepsizes. mSPS generalizes the recently proposed stochastic Polyak stepsize (SPS) (Loizou et al. 2021) to mirror descent and remains both practical and efficient for modern machine learning applications while inheriting the benefits of mirror descent. We complement our results with experiments across various supervised learning tasks and different instances of SMD, demonstrating the effectiveness of mSPS.


Performative Prediction with Neural Networks

arXiv.org Artificial Intelligence

Performative prediction is a framework for learning models that influence the data they intend to predict. We focus on finding classifiers that are performatively stable, i.e. optimal for the data distribution they induce. Standard convergence results for finding a performatively stable classifier with the method of repeated risk minimization assume that the data distribution is Lipschitz continuous to the model's parameters. Under this assumption, the loss must be strongly convex and smooth in these parameters; otherwise, the method will diverge for some problems. In this work, we instead assume that the data distribution is Lipschitz continuous with respect to the model's predictions, a more natural assumption for performative systems. As a result, we are able to significantly relax the assumptions on the loss function. In particular, we do not need to assume convexity with respect to the model's parameters. As an illustration, we introduce a resampling procedure that models realistic distribution shifts and show that it satisfies our assumptions. We support our theory by showing that one can learn performatively stable classifiers with neural networks making predictions about real data that shift according to our proposed procedure.