Not enough data to create a plot.
Try a different view from the menu above.
Mitliagkas, Ioannis
Negative Momentum for Improved Game Dynamics
Gidel, Gauthier, Hemmat, Reyhane Askari, Pezeshki, Mohammad, Huang, Gabriel, Lepriol, Remi, Lacoste-Julien, Simon, Mitliagkas, Ioannis
Games generalize the optimization paradigm by introducing different objective functions for different optimizing agents, known as players. Generative Adversarial Networks (GANs) are arguably the most popular game formulation in recent machine learning literature. GANs achieve great results on generating realistic natural images, however they are known for being difficult to train. Training them involves finding a Nash equilibrium, typically performed using gradient descent on the two players' objectives. Game dynamics can induce rotations that slow down convergence to a Nash equilibrium, or prevent it altogether. We provide a theoretical analysis of the game dynamics. Our analysis, supported by experiments, shows that gradient descent with a negative momentum term can improve the convergence properties of some GANs.
Fortified Networks: Improving the Robustness of Deep Networks by Modeling the Manifold of Hidden Representations
Lamb, Alex, Binas, Jonathan, Goyal, Anirudh, Serdyuk, Dmitriy, Subramanian, Sandeep, Mitliagkas, Ioannis, Bengio, Yoshua
Deep networks have achieved impressive results across a variety of important tasks. However a known weakness is a failure to perform well when evaluated on data which differ from the training distribution, even if these differences are very small, as is the case with adversarial examples. We propose Fortified Networks, a simple transformation of existing networks, which fortifies the hidden layers in a deep network by identifying when the hidden states are off of the data manifold, and maps these hidden states back to parts of the data manifold where the network performs well. Our principal contribution is to show that fortifying these hidden states improves the robustness of deep networks and our experiments (i) demonstrate improved robustness to standard adversarial attacks in both black-box and white-box threat models; (ii) suggest that our improvements are not primarily due to the gradient masking problem and (iii) show the advantage of doing this fortification in the hidden layers instead of the input space.
YellowFin and the Art of Momentum Tuning
Zhang, Jian, Mitliagkas, Ioannis
Hyperparameter tuning is one of the most time-consuming workloads in deep learning. State-of-the-art optimizers, such as AdaGrad, RMSProp and Adam, reduce this labor by adaptively tuning an individual learning rate for each variable. Recently researchers have shown renewed interest in simpler methods like momentum SGD as they may yield better test metrics. Motivated by this trend, we ask: can simple adaptive methods based on SGD perform as well or better? We revisit the momentum SGD algorithm and show that hand-tuning a single learning rate and momentum makes it competitive with Adam. We then analyze its robustness to learning rate misspecification and objective curvature variation. Based on these insights, we design YellowFin, an automatic tuner for momentum and learning rate in SGD. YellowFin optionally uses a negative-feedback loop to compensate for the momentum dynamics in asynchronous settings on the fly. We empirically show that YellowFin can converge in fewer iterations than Adam on ResNets and LSTMs for image recognition, language modeling and constituency parsing, with a speedup of up to 3.28x in synchronous and up to 2.69x in asynchronous settings.
Improving Gibbs Sampler Scan Quality with DoGS
Mitliagkas, Ioannis, Mackey, Lester
The pairwise influence matrix of Dobrushin has long been used as an analytical tool to bound the rate of convergence of Gibbs sampling. In this work, we use Dobrushin influence as the basis of a practical tool to certify and efficiently improve the quality of a discrete Gibbs sampler. Our Dobrushin-optimized Gibbs samplers (DoGS) offer customized variable selection orders for a given sampling budget and variable subset of interest, explicit bounds on total variation distance to stationarity, and certifiable improvements over the standard systematic and uniform random scan Gibbs samplers. In our experiments with joint image segmentation and object recognition, Markov chain Monte Carlo maximum likelihood estimation, and Ising model inference, DoGS consistently deliver higher-quality inferences with significantly smaller sampling budgets than standard Gibbs samplers.
Scan Order in Gibbs Sampling: Models in Which it Matters and Bounds on How Much
He, Bryan D., Sa, Christopher M. De, Mitliagkas, Ioannis, Rรฉ, Christopher
Gibbs sampling is a Markov Chain Monte Carlo sampling technique that iteratively samples variables from their conditional distributions. There are two common scan orders for the variables: random scan and systematic scan. Due to the benefits of locality in hardware, systematic scan is commonly used, even though most statistical guarantees are only for random scan. While it has been conjectured that the mixing times of random scan and systematic scan do not differ by more than a logarithmic factor, we show by counterexample that this is not the case, and we prove that that the mixing times do not differ by more than a polynomial factor under mild conditions. To prove these relative bounds, we introduce a method of augmenting the state space to study systematic scan using conductance.
Asynchrony begets Momentum, with an Application to Deep Learning
Mitliagkas, Ioannis, Zhang, Ce, Hadjis, Stefan, Rรฉ, Christopher
Asynchronous methods are widely used in deep learning, but have limited theoretical justification when applied to non-convex problems. We show that running stochastic gradient descent (SGD) in an asynchronous manner can be viewed as adding a momentum-like term to the SGD iteration. Our result does not assume convexity of the objective function, so it is applicable to deep learning systems. We observe that a standard queuing model of asynchrony results in a form of momentum that is commonly used by deep learning practitioners. This forges a link between queuing theory and asynchrony in deep learning systems, which could be useful for systems builders. For convolutional neural networks, we experimentally validate that the degree of asynchrony directly correlates with the momentum, confirming our main result. An important implication is that tuning the momentum parameter is important when considering different levels of asynchrony. We assert that properly tuned momentum reduces the number of steps required for convergence. Finally, our theory suggests new ways of counteracting the adverse effects of asynchrony: a simple mechanism like using negative algorithmic momentum can improve performance under high asynchrony. Since asynchronous methods have better hardware efficiency, this result may shed light on when asynchronous execution is more efficient for deep learning systems.
Parallel SGD: When does averaging help?
Zhang, Jian, De Sa, Christopher, Mitliagkas, Ioannis, Rรฉ, Christopher
Consider a number of workers running SGD independently on the same pool of data and averaging the models every once in a while -- a common but not well understood practice. We study model averaging as a variance-reducing mechanism and describe two ways in which the frequency of averaging affects convergence. For convex objectives, we show the benefit of frequent averaging depends on the gradient variance envelope. For non-convex objectives, we illustrate that this benefit depends on the presence of multiple globally optimal points. We complement our findings with multicore experiments on both synthetic and real data.
Scan Order in Gibbs Sampling: Models in Which it Matters and Bounds on How Much
He, Bryan, De Sa, Christopher, Mitliagkas, Ioannis, Rรฉ, Christopher
Gibbs sampling is a Markov Chain Monte Carlo sampling technique that iteratively samples variables from their conditional distributions. There are two common scan orders for the variables: random scan and systematic scan. Due to the benefits of locality in hardware, systematic scan is commonly used, even though most statistical guarantees are only for random scan. While it has been conjectured that the mixing times of random scan and systematic scan do not differ by more than a logarithmic factor, we show by counterexample that this is not the case, and we prove that that the mixing times do not differ by more than a polynomial factor under mild conditions. To prove these relative bounds, we introduce a method of augmenting the state space to study systematic scan using conductance.
Memory Limited, Streaming PCA
Mitliagkas, Ioannis, Caramanis, Constantine, Jain, Prateek
We consider streaming, one-pass principal component analysis (PCA), in the high-dimensional regime, with limited memory. Here, $p$-dimensional samples are presented sequentially, and the goal is to produce the $k$-dimensional subspace that best approximates these points. Standard algorithms require $O(p^2)$ memory; meanwhile no algorithm can do better than $O(kp)$ memory, since this is what the output itself requires. Memory (or storage) complexity is most meaningful when understood in the context of computational and sample complexity. Sample complexity for high-dimensional PCA is typically studied in the setting of the {\em spiked covariance model}, where $p$-dimensional points are generated from a population covariance equal to the identity (white noise) plus a low-dimensional perturbation (the spike) which is the signal to be recovered. It is now well-understood that the spike can be recovered when the number of samples, $n$, scales proportionally with the dimension, $p$. Yet, all algorithms that provably achieve this, have memory complexity $O(p^2)$. Meanwhile, algorithms with memory-complexity $O(kp)$ do not have provable bounds on sample complexity comparable to $p$. We present an algorithm that achieves both: it uses $O(kp)$ memory (meaning storage of any kind) and is able to compute the $k$-dimensional spike with $O(p \log p)$ sample-complexity -- the first algorithm of its kind. While our theoretical analysis focuses on the spiked covariance model, our simulations show that our algorithm is successful on much more general models for the data.
Memory Limited, Streaming PCA
Mitliagkas, Ioannis, Caramanis, Constantine, Jain, Prateek
We consider streaming, one-pass principal component analysis (PCA), in the high-dimensional regime, with limited memory. Here, $p$-dimensional samples are presented sequentially, and the goal is to produce the $k$-dimensional subspace that best approximates these points. Standard algorithms require $O(p^2)$ memory; meanwhile no algorithm can do better than $O(kp)$ memory, since this is what the output itself requires. Memory (or storage) complexity is most meaningful when understood in the context of computational and sample complexity. Sample complexity for high-dimensional PCA is typically studied in the setting of the {\em spiked covariance model}, where $p$-dimensional points are generated from a population covariance equal to the identity (white noise) plus a low-dimensional perturbation (the spike) which is the signal to be recovered. It is now well-understood that the spike can be recovered when the number of samples, $n$, scales proportionally with the dimension, $p$. Yet, all algorithms that provably achieve this, have memory complexity $O(p^2)$. Meanwhile, algorithms with memory-complexity $O(kp)$ do not have provable bounds on sample complexity comparable to $p$. We present an algorithm that achieves both: it uses $O(kp)$ memory (meaning storage of any kind) and is able to compute the $k$-dimensional spike with $O(p \log p)$ sample-complexity -- the first algorithm of its kind. While our theoretical analysis focuses on the spiked covariance model, our simulations show that our algorithm is successful on much more general models for the data.