Plotting

 Mitchell, Melanie


Frontiers in Collective Intelligence: A Workshop Report

arXiv.org Artificial Intelligence

Abstract: In August of 2021, the Santa Fe Institute hosted a workshop on collective intelligence as part of its Foundations of Intelligence project. This project seeks to advance the field of artificial intelligence by promoting interdisciplinary research on the nature of intelligence. The workshop brought together computer scientists, biologists, philosophers, social scientists, and others to share their insights about how intelligence can emerge from interactions among multiple agents--whether those agents be machines, animals, or human beings. In this report, we summarize each of the talks and the subsequent discussions. We also draw out a number of key themes and identify important frontiers for future research. When building intelligent systems, the need to employ complex systems comprising a large number of more basic components seems inescapable. Brains are composed of billions of neurons, and digital computers are composed of billions of transistors. It is the myriad ...


Foundations of Intelligence in Natural and Artificial Systems: A Workshop Report

arXiv.org Artificial Intelligence

In March of 2021, the Santa Fe Institute hosted a workshop as part of its Foundations of Intelligence in Natural and Artificial Systems project. This project seeks to advance the field of artificial intelligence by promoting interdisciplinary research on the nature of intelligence. During the workshop, speakers from diverse disciplines gathered to develop a taxonomy of intelligence, articulating their own understanding of intelligence and how their research has furthered that understanding. In this report, we summarize the insights offered by each speaker and identify the themes that emerged during the talks and subsequent discussions.


Why AI is Harder Than We Think

arXiv.org Artificial Intelligence

Since its beginning in the 1950s, the field of artificial intelligence has cycled several times between periods of optimistic predictions and massive investment ("AI spring") and periods of disappointment, loss of confidence, and reduced funding ("AI winter"). Even with today's seemingly fast pace of AI breakthroughs, the development of long-promised technologies such as self-driving cars, housekeeping robots, and conversational companions has turned out to be much harder than many people expected. One reason for these repeating cycles is our limited understanding of the nature and complexity of intelligence itself. In this paper I describe four fallacies in common assumptions made by AI researchers, which can lead to overconfident predictions about the field. I conclude by discussing the open questions spurred by these fallacies, including the age-old challenge of imbuing machines with humanlike common sense.


Abstraction and Analogy-Making in Artificial Intelligence

arXiv.org Artificial Intelligence

Abstract: Conceptual abstraction and analogy-making are key abilities underlying humans' abilities to learn, reason, and robustly adapt their knowledge to new domains. Despite of a long history of research on constructing AI systems with these abilities, no current AI system is anywhere close to a capability of forming humanlike abstractions or analogies. This paper reviews the advantages and limitations of several approaches toward this goal, including symbolic methods, deep learning, and probabilistic program induction. The paper concludes with several proposals for designing challenge tasks and evaluation measures in order to make quantifiable and generalizable progress in this area.


Next Wave Artificial Intelligence: Robust, Explainable, Adaptable, Ethical, and Accountable

arXiv.org Artificial Intelligence

The history of AI has included several "waves" of ideas. The first wave, from the mid-1950s to the 1980s, focused on logic and symbolic hand-encoded representations of knowledge, the foundations of so-called "expert systems". The second wave, starting in the 1990s, focused on statistics and machine learning, in which, instead of hand-programming rules for behavior, programmers constructed "statistical learning algorithms" that could be trained on large datasets. In the most recent wave research in AI has largely focused on deep (i.e., many-layered) neural networks, which are loosely inspired by the brain and trained by "deep learning" methods. However, while deep neural networks have led to many successes and new capabilities in computer vision, speech recognition, language processing, game-playing, and robotics, their potential for broad application remains limited by several factors. A concerning limitation is that even the most successful of today's AI systems suffer from brittleness-they can fail in unexpected ways when faced with situations that differ sufficiently from ones they have been trained on. This lack of robustness also appears in the vulnerability of AI systems to adversarial attacks, in which an adversary can subtly manipulate data in a way to guarantee a specific wrong answer or action from an AI system. AI systems also can absorb biases-based on gender, race, or other factors-from their training data and further magnify these biases in their subsequent decision-making. Taken together, these various limitations have prevented AI systems such as automatic medical diagnosis or autonomous vehicles from being sufficiently trustworthy for wide deployment. The massive proliferation of AI across society will require radically new ideas to yield technology that will not sacrifice our productivity, our quality of life, or our values.


When will a Genetic Algorithm Outperform Hill Climbing

Neural Information Processing Systems

HoUand Dept. of Psychology University of Michigan Ann Arbor, MI 48109 StephanieForrest Dept. of Computer Science University of New Mexico Albuquerque, NM 87131 Abstract We analyze a simple hill-climbing algorithm (RMHC) that was previously shownto outperform a genetic algorithm (GA) on a simple "Royal Road" function. We then analyze an "idealized" genetic algorithm (IGA) that is significantly faster than RMHC and that gives a lower bound for GA speed. We identify the features of the IGA that give rise to this speedup, and discuss how these features can be incorporated into a real GA. 1 INTRODUCTION Our goal is to understand the class of problems for which genetic algorithms (GA) are most suited, and in particular, for which they will outperform other search algorithms. Several studies have empirically compared GAs with other search and optimization methods such as simple hill-climbing (e.g., Davis, 1991), simulated annealing (e.g., Ingber & Rosen, 1992), linear, nonlinear, and integer programming techniques, and other traditional optimization techniques (e.g., De Jong, 1975). However, such comparisons typically compare one version of the GA with a second algorithm on a single problem or set of problems, often using performance criteria which may not be appropriate.


When will a Genetic Algorithm Outperform Hill Climbing

Neural Information Processing Systems

We analyze a simple hill-climbing algorithm (RMHC) that was previously shown to outperform a genetic algorithm (GA) on a simple "Royal Road" function. We then analyze an "idealized" genetic algorithm (IGA) that is significantly faster than RMHC and that gives a lower bound for GA speed. We identify the features of the IGA that give rise to this speedup, and discuss how these features can be incorporated into a real GA. 1 INTRODUCTION Our goal is to understand the class of problems for which genetic algorithms (GA) are most suited, and in particular, for which they will outperform other search algorithms. Several studies have empirically compared GAs with other search and optimization methods such as simple hill-climbing (e.g., Davis, 1991), simulated annealing (e.g., Ingber & Rosen, 1992), linear, nonlinear, and integer programming techniques, and other traditional optimization techniques (e.g., De Jong, 1975). However, such comparisons typically compare one version of the GA with a second algorithm on a single problem or set of problems, often using performance criteria which may not be appropriate.