Mishra, Swaroop
Beyond ChatBots: ExploreLLM for Structured Thoughts and Personalized Model Responses
Ma, Xiao, Mishra, Swaroop, Liu, Ariel, Su, Sophie, Chen, Jilin, Kulkarni, Chinmay, Cheng, Heng-Tze, Le, Quoc, Chi, Ed
Large language model (LLM) powered chatbots are primarily text-based today, and impose a large interactional cognitive load, especially for exploratory or sensemaking tasks such as planning a trip or learning about a new city. Because the interaction is textual, users have little scaffolding in the way of structure, informational "scent", or ability to specify high-level preferences or goals. We introduce ExploreLLM that allows users to structure thoughts, help explore different options, navigate through the choices and recommendations, and to more easily steer models to generate more personalized responses. We conduct a user study and show that users find it helpful to use ExploreLLM for exploratory or planning tasks, because it provides a useful schema-like structure to the task, and guides users in planning. The study also suggests that users can more easily personalize responses with high-level preferences with ExploreLLM. Together, ExploreLLM points to a future where users interact with LLMs beyond the form of chatbots, and instead designed to support complex user tasks with a tighter integration between natural language and graphical user interfaces.
AutoMix: Automatically Mixing Language Models
Madaan, Aman, Aggarwal, Pranjal, Anand, Ankit, Potharaju, Srividya Pranavi, Mishra, Swaroop, Zhou, Pei, Gupta, Aditya, Rajagopal, Dheeraj, Kappaganthu, Karthik, Yang, Yiming, Upadhyay, Shyam, Mausam, null, Faruqui, Manaal
Large language models (LLMs) are now available in various sizes and configurations from cloud API providers. While this diversity offers a broad spectrum of choices, effectively leveraging the options to optimize computational cost and performance remains challenging. In this work, we present AutoMix, an approach that strategically routes queries to larger LMs, based on the approximate correctness of outputs from a smaller LM. Central to AutoMix is a few-shot self-verification mechanism, which estimates the reliability of its own outputs without requiring training. Given that verifications can be noisy, we employ a meta verifier in AutoMix to refine the accuracy of these assessments. Our experiments using LLAMA2-13/70B, on five context-grounded reasoning datasets demonstrate that AutoMix surpasses established baselines, improving the incremental benefit per cost by up to 89%. Our code and data are available at https://github.com/automix-llm/automix.
InstructABSA: Instruction Learning for Aspect Based Sentiment Analysis
Scaria, Kevin, Gupta, Himanshu, Goyal, Siddharth, Sawant, Saurabh Arjun, Mishra, Swaroop, Baral, Chitta
We introduce InstructABSA, an instruction learning paradigm for Aspect-Based Sentiment Analysis (ABSA) subtasks. Our method introduces positive, negative, and neutral examples to each training sample, and instruction tune the model (Tk-Instruct) for ABSA subtasks, yielding significant performance improvements. Experimental results on the Sem Eval 2014, 15, and 16 datasets demonstrate that InstructABSA outperforms the previous state-of-the-art (SOTA) approaches on Term Extraction (ATE), Sentiment Classification(ATSC) and Sentiment Pair Extraction (ASPE) subtasks. In particular, InstructABSA outperforms the previous state-of-the-art (SOTA) on the Rest14 ATE subtask by 5.69% points, the Rest15 ATSC subtask by 9.59% points, and the Lapt14 AOPE subtask by 3.37% points, surpassing 7x larger models. We also get competitive results on AOOE, AOPE, and AOSTE subtasks indicating strong generalization ability to all subtasks. Exploring sample efficiency reveals that just 50% train data is required to get competitive results with other instruction tuning approaches. Lastly, we assess the quality of instructions and observe that InstructABSA's performance experiences a decline of ~10% when adding misleading examples.
TarGEN: Targeted Data Generation with Large Language Models
Gupta, Himanshu, Scaria, Kevin, Anantheswaran, Ujjwala, Verma, Shreyas, Parmar, Mihir, Sawant, Saurabh Arjun, Baral, Chitta, Mishra, Swaroop
The rapid advancement of large language models (LLMs) has sparked interest in data synthesis techniques, aiming to generate diverse and high-quality synthetic datasets. However, these synthetic datasets often suffer from a lack of diversity and added noise. In this paper, we present TarGEN, a multi-step prompting strategy for generating high-quality synthetic datasets utilizing a LLM. An advantage of TarGEN is its seedless nature; it does not require specific task instances, broadening its applicability beyond task replication. We augment TarGEN with a method known as self-correction empowering LLMs to rectify inaccurately labeled instances during dataset creation, ensuring reliable labels. To assess our technique's effectiveness, we emulate 8 tasks from the SuperGLUE benchmark and finetune various language models, including encoder-only, encoder-decoder, and decoder-only models on both synthetic and original training sets. Evaluation on the original test set reveals that models trained on datasets generated by TarGEN perform approximately 1-2% points better than those trained on original datasets (82.84% via syn. vs. 81.12% on og. using Flan-T5). When incorporating instruction tuning, the performance increases to 84.54% on synthetic data vs. 81.49% on original data by Flan-T5. A comprehensive analysis of the synthetic dataset compared to the original dataset reveals that the synthetic dataset demonstrates similar or higher levels of dataset complexity and diversity. Furthermore, the synthetic dataset displays a bias level that aligns closely with the original dataset. Finally, when pre-finetuned on our synthetic SuperGLUE dataset, T5-3B yields impressive results on the OpenLLM leaderboard, surpassing the model trained on the Self-Instruct dataset by 4.14% points. We hope that TarGEN can be helpful for quality data generation and reducing the human efforts to create complex benchmarks.
InstructExcel: A Benchmark for Natural Language Instruction in Excel
Payan, Justin, Mishra, Swaroop, Singh, Mukul, Negreanu, Carina, Poelitz, Christian, Baral, Chitta, Roy, Subhro, Chakravarthy, Rasika, Van Durme, Benjamin, Nouri, Elnaz
With the evolution of Large Language Models (LLMs) we can solve increasingly more complex NLP tasks across various domains, including spreadsheets. This work investigates whether LLMs can generate code (Excel OfficeScripts, a TypeScript API for executing many tasks in Excel) that solves Excel specific tasks provided via natural language user instructions. To do so we introduce a new large-scale benchmark, InstructExcel, created by leveraging the 'Automate' feature in Excel to automatically generate OfficeScripts from users' actions. Our benchmark includes over 10k samples covering 170+ Excel operations across 2,000 publicly available Excel spreadsheets. Experiments across various zero-shot and few-shot settings show that InstructExcel is a hard benchmark for state of the art models like GPT-4. We observe that (1) using GPT-4 over GPT-3.5, (2) providing more in-context examples, and (3) dynamic prompting can help improve performance on this benchmark.
Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models
Zheng, Huaixiu Steven, Mishra, Swaroop, Chen, Xinyun, Cheng, Heng-Tze, Chi, Ed H., Le, Quoc V, Zhou, Denny
We present Step-Back Prompting, a simple prompting technique that enables LLMs to do abstractions to derive high-level concepts and first principles from instances containing specific details. Using the concepts and principles to guide the reasoning steps, LLMs significantly improve their abilities in following a correct reasoning path towards the solution. We conduct experiments of Step-Back Prompting with PaLM-2L models and observe substantial performance gains on a wide range of challenging reasoning-intensive tasks including STEM, Knowledge QA, and Multi-Hop Reasoning. For instance, Step-Back Prompting improves PaLM-2L performance on MMLU Physics and Chemistry by 7% and 11%, TimeQA by 27%, and MuSiQue by 7%.
How FaR Are Large Language Models From Agents with Theory-of-Mind?
Zhou, Pei, Madaan, Aman, Potharaju, Srividya Pranavi, Gupta, Aditya, McKee, Kevin R., Holtzman, Ari, Pujara, Jay, Ren, Xiang, Mishra, Swaroop, Nematzadeh, Aida, Upadhyay, Shyam, Faruqui, Manaal
"Thinking is for Doing." Humans can infer other people's mental states from observations--an ability called Theory-of-Mind (ToM)--and subsequently act pragmatically on those inferences. Existing question answering benchmarks such as ToMi ask models questions to make inferences about beliefs of characters in a story, but do not test whether models can then use these inferences to guide their actions. We propose a new evaluation paradigm for large language models (LLMs): Thinking for Doing (T4D), which requires models to connect inferences about others' mental states to actions in social scenarios. Experiments on T4D demonstrate that LLMs such as GPT-4 and PaLM 2 seemingly excel at tracking characters' beliefs in stories, but they struggle to translate this capability into strategic action. Our analysis reveals the core challenge for LLMs lies in identifying the implicit inferences about mental states without being explicitly asked about as in ToMi, that lead to choosing the correct action in T4D. To bridge this gap, we introduce a zero-shot prompting framework, Foresee and Reflect (FaR), which provides a reasoning structure that encourages LLMs to anticipate future challenges and reason about potential actions. FaR boosts GPT-4's performance from 50% to 71% on T4D, outperforming other prompting methods such as Chain-of-Thought and Self-Ask. Moreover, FaR generalizes to diverse out-of-distribution story structures and scenarios that also require ToM inferences to choose an action, consistently outperforming other methods including few-shot in-context learning.
Large Language Models Cannot Self-Correct Reasoning Yet
Huang, Jie, Chen, Xinyun, Mishra, Swaroop, Zheng, Huaixiu Steven, Yu, Adams Wei, Song, Xinying, Zhou, Denny
Large Language Models (LLMs) have emerged as a groundbreaking technology with their unparalleled text generation capabilities across various applications. Nevertheless, concerns persist regarding the accuracy and appropriateness of their generated content. A contemporary methodology, self-correction, has been proposed as a remedy to these issues. Building upon this premise, this paper critically examines the role and efficacy of self-correction within LLMs, shedding light on its true potential and limitations. Central to our investigation is the notion of intrinsic self-correction, whereby an LLM attempts to correct its initial responses based solely on its inherent capabilities, without the crutch of external feedback. In the context of reasoning, our research indicates that LLMs struggle to self-correct their responses without external feedback, and at times, their performance might even degrade post self-correction. Drawing from these insights, we offer suggestions for future research and practical applications in this field.
Let's Do a Thought Experiment: Using Counterfactuals to Improve Moral Reasoning
Ma, Xiao, Mishra, Swaroop, Beirami, Ahmad, Beutel, Alex, Chen, Jilin
Language models still struggle on moral reasoning, despite their impressive performance in many other tasks. In particular, the Moral Scenarios task in MMLU (Multi-task Language Understanding) is among the worst performing tasks for many language models, including GPT-3. In this work, we propose a new prompting framework, Thought Experiments, to teach language models to do better moral reasoning using counterfactuals. Experiment results show that our framework elicits counterfactual questions and answers from the model, which in turn helps improve the accuracy on Moral Scenarios task by 9-16% compared to other zero-shot baselines. Interestingly, unlike math reasoning tasks, zero-shot Chain-of-Thought (CoT) reasoning doesn't work out of the box, and even reduces accuracy by around 4% compared to direct zero-shot. We further observed that with minimal human supervision in the form of 5 few-shot examples, the accuracy of the task can be improved to as much as 80%.
Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models
Srivastava, Aarohi, Rastogi, Abhinav, Rao, Abhishek, Shoeb, Abu Awal Md, Abid, Abubakar, Fisch, Adam, Brown, Adam R., Santoro, Adam, Gupta, Aditya, Garriga-Alonso, Adrià, Kluska, Agnieszka, Lewkowycz, Aitor, Agarwal, Akshat, Power, Alethea, Ray, Alex, Warstadt, Alex, Kocurek, Alexander W., Safaya, Ali, Tazarv, Ali, Xiang, Alice, Parrish, Alicia, Nie, Allen, Hussain, Aman, Askell, Amanda, Dsouza, Amanda, Slone, Ambrose, Rahane, Ameet, Iyer, Anantharaman S., Andreassen, Anders, Madotto, Andrea, Santilli, Andrea, Stuhlmüller, Andreas, Dai, Andrew, La, Andrew, Lampinen, Andrew, Zou, Andy, Jiang, Angela, Chen, Angelica, Vuong, Anh, Gupta, Animesh, Gottardi, Anna, Norelli, Antonio, Venkatesh, Anu, Gholamidavoodi, Arash, Tabassum, Arfa, Menezes, Arul, Kirubarajan, Arun, Mullokandov, Asher, Sabharwal, Ashish, Herrick, Austin, Efrat, Avia, Erdem, Aykut, Karakaş, Ayla, Roberts, B. Ryan, Loe, Bao Sheng, Zoph, Barret, Bojanowski, Bartłomiej, Özyurt, Batuhan, Hedayatnia, Behnam, Neyshabur, Behnam, Inden, Benjamin, Stein, Benno, Ekmekci, Berk, Lin, Bill Yuchen, Howald, Blake, Orinion, Bryan, Diao, Cameron, Dour, Cameron, Stinson, Catherine, Argueta, Cedrick, Ramírez, César Ferri, Singh, Chandan, Rathkopf, Charles, Meng, Chenlin, Baral, Chitta, Wu, Chiyu, Callison-Burch, Chris, Waites, Chris, Voigt, Christian, Manning, Christopher D., Potts, Christopher, Ramirez, Cindy, Rivera, Clara E., Siro, Clemencia, Raffel, Colin, Ashcraft, Courtney, Garbacea, Cristina, Sileo, Damien, Garrette, Dan, Hendrycks, Dan, Kilman, Dan, Roth, Dan, Freeman, Daniel, Khashabi, Daniel, Levy, Daniel, González, Daniel Moseguí, Perszyk, Danielle, Hernandez, Danny, Chen, Danqi, Ippolito, Daphne, Gilboa, Dar, Dohan, David, Drakard, David, Jurgens, David, Datta, Debajyoti, Ganguli, Deep, Emelin, Denis, Kleyko, Denis, Yuret, Deniz, Chen, Derek, Tam, Derek, Hupkes, Dieuwke, Misra, Diganta, Buzan, Dilyar, Mollo, Dimitri Coelho, Yang, Diyi, Lee, Dong-Ho, Schrader, Dylan, Shutova, Ekaterina, Cubuk, Ekin Dogus, Segal, Elad, Hagerman, Eleanor, Barnes, Elizabeth, Donoway, Elizabeth, Pavlick, Ellie, Rodola, Emanuele, Lam, Emma, Chu, Eric, Tang, Eric, Erdem, Erkut, Chang, Ernie, Chi, Ethan A., Dyer, Ethan, Jerzak, Ethan, Kim, Ethan, Manyasi, Eunice Engefu, Zheltonozhskii, Evgenii, Xia, Fanyue, Siar, Fatemeh, Martínez-Plumed, Fernando, Happé, Francesca, Chollet, Francois, Rong, Frieda, Mishra, Gaurav, Winata, Genta Indra, de Melo, Gerard, Kruszewski, Germán, Parascandolo, Giambattista, Mariani, Giorgio, Wang, Gloria, Jaimovitch-López, Gonzalo, Betz, Gregor, Gur-Ari, Guy, Galijasevic, Hana, Kim, Hannah, Rashkin, Hannah, Hajishirzi, Hannaneh, Mehta, Harsh, Bogar, Hayden, Shevlin, Henry, Schütze, Hinrich, Yakura, Hiromu, Zhang, Hongming, Wong, Hugh Mee, Ng, Ian, Noble, Isaac, Jumelet, Jaap, Geissinger, Jack, Kernion, Jackson, Hilton, Jacob, Lee, Jaehoon, Fisac, Jaime Fernández, Simon, James B., Koppel, James, Zheng, James, Zou, James, Kocoń, Jan, Thompson, Jana, Wingfield, Janelle, Kaplan, Jared, Radom, Jarema, Sohl-Dickstein, Jascha, Phang, Jason, Wei, Jason, Yosinski, Jason, Novikova, Jekaterina, Bosscher, Jelle, Marsh, Jennifer, Kim, Jeremy, Taal, Jeroen, Engel, Jesse, Alabi, Jesujoba, Xu, Jiacheng, Song, Jiaming, Tang, Jillian, Waweru, Joan, Burden, John, Miller, John, Balis, John U., Batchelder, Jonathan, Berant, Jonathan, Frohberg, Jörg, Rozen, Jos, Hernandez-Orallo, Jose, Boudeman, Joseph, Guerr, Joseph, Jones, Joseph, Tenenbaum, Joshua B., Rule, Joshua S., Chua, Joyce, Kanclerz, Kamil, Livescu, Karen, Krauth, Karl, Gopalakrishnan, Karthik, Ignatyeva, Katerina, Markert, Katja, Dhole, Kaustubh D., Gimpel, Kevin, Omondi, Kevin, Mathewson, Kory, Chiafullo, Kristen, Shkaruta, Ksenia, Shridhar, Kumar, McDonell, Kyle, Richardson, Kyle, Reynolds, Laria, Gao, Leo, Zhang, Li, Dugan, Liam, Qin, Lianhui, Contreras-Ochando, Lidia, Morency, Louis-Philippe, Moschella, Luca, Lam, Lucas, Noble, Lucy, Schmidt, Ludwig, He, Luheng, Colón, Luis Oliveros, Metz, Luke, Şenel, Lütfi Kerem, Bosma, Maarten, Sap, Maarten, ter Hoeve, Maartje, Farooqi, Maheen, Faruqui, Manaal, Mazeika, Mantas, Baturan, Marco, Marelli, Marco, Maru, Marco, Quintana, Maria Jose Ramírez, Tolkiehn, Marie, Giulianelli, Mario, Lewis, Martha, Potthast, Martin, Leavitt, Matthew L., Hagen, Matthias, Schubert, Mátyás, Baitemirova, Medina Orduna, Arnaud, Melody, McElrath, Melvin, Yee, Michael A., Cohen, Michael, Gu, Michael, Ivanitskiy, Michael, Starritt, Michael, Strube, Michael, Swędrowski, Michał, Bevilacqua, Michele, Yasunaga, Michihiro, Kale, Mihir, Cain, Mike, Xu, Mimee, Suzgun, Mirac, Walker, Mitch, Tiwari, Mo, Bansal, Mohit, Aminnaseri, Moin, Geva, Mor, Gheini, Mozhdeh, T, Mukund Varma, Peng, Nanyun, Chi, Nathan A., Lee, Nayeon, Krakover, Neta Gur-Ari, Cameron, Nicholas, Roberts, Nicholas, Doiron, Nick, Martinez, Nicole, Nangia, Nikita, Deckers, Niklas, Muennighoff, Niklas, Keskar, Nitish Shirish, Iyer, Niveditha S., Constant, Noah, Fiedel, Noah, Wen, Nuan, Zhang, Oliver, Agha, Omar, Elbaghdadi, Omar, Levy, Omer, Evans, Owain, Casares, Pablo Antonio Moreno, Doshi, Parth, Fung, Pascale, Liang, Paul Pu, Vicol, Paul, Alipoormolabashi, Pegah, Liao, Peiyuan, Liang, Percy, Chang, Peter, Eckersley, Peter, Htut, Phu Mon, Hwang, Pinyu, Miłkowski, Piotr, Patil, Piyush, Pezeshkpour, Pouya, Oli, Priti, Mei, Qiaozhu, Lyu, Qing, Chen, Qinlang, Banjade, Rabin, Rudolph, Rachel Etta, Gabriel, Raefer, Habacker, Rahel, Risco, Ramon, Millière, Raphaël, Garg, Rhythm, Barnes, Richard, Saurous, Rif A., Arakawa, Riku, Raymaekers, Robbe, Frank, Robert, Sikand, Rohan, Novak, Roman, Sitelew, Roman, LeBras, Ronan, Liu, Rosanne, Jacobs, Rowan, Zhang, Rui, Salakhutdinov, Ruslan, Chi, Ryan, Lee, Ryan, Stovall, Ryan, Teehan, Ryan, Yang, Rylan, Singh, Sahib, Mohammad, Saif M., Anand, Sajant, Dillavou, Sam, Shleifer, Sam, Wiseman, Sam, Gruetter, Samuel, Bowman, Samuel R., Schoenholz, Samuel S., Han, Sanghyun, Kwatra, Sanjeev, Rous, Sarah A., Ghazarian, Sarik, Ghosh, Sayan, Casey, Sean, Bischoff, Sebastian, Gehrmann, Sebastian, Schuster, Sebastian, Sadeghi, Sepideh, Hamdan, Shadi, Zhou, Sharon, Srivastava, Shashank, Shi, Sherry, Singh, Shikhar, Asaadi, Shima, Gu, Shixiang Shane, Pachchigar, Shubh, Toshniwal, Shubham, Upadhyay, Shyam, Shyamolima, null, Debnath, null, Shakeri, Siamak, Thormeyer, Simon, Melzi, Simone, Reddy, Siva, Makini, Sneha Priscilla, Lee, Soo-Hwan, Torene, Spencer, Hatwar, Sriharsha, Dehaene, Stanislas, Divic, Stefan, Ermon, Stefano, Biderman, Stella, Lin, Stephanie, Prasad, Stephen, Piantadosi, Steven T., Shieber, Stuart M., Misherghi, Summer, Kiritchenko, Svetlana, Mishra, Swaroop, Linzen, Tal, Schuster, Tal, Li, Tao, Yu, Tao, Ali, Tariq, Hashimoto, Tatsu, Wu, Te-Lin, Desbordes, Théo, Rothschild, Theodore, Phan, Thomas, Wang, Tianle, Nkinyili, Tiberius, Schick, Timo, Kornev, Timofei, Tunduny, Titus, Gerstenberg, Tobias, Chang, Trenton, Neeraj, Trishala, Khot, Tushar, Shultz, Tyler, Shaham, Uri, Misra, Vedant, Demberg, Vera, Nyamai, Victoria, Raunak, Vikas, Ramasesh, Vinay, Prabhu, Vinay Uday, Padmakumar, Vishakh, Srikumar, Vivek, Fedus, William, Saunders, William, Zhang, William, Vossen, Wout, Ren, Xiang, Tong, Xiaoyu, Zhao, Xinran, Wu, Xinyi, Shen, Xudong, Yaghoobzadeh, Yadollah, Lakretz, Yair, Song, Yangqiu, Bahri, Yasaman, Choi, Yejin, Yang, Yichi, Hao, Yiding, Chen, Yifu, Belinkov, Yonatan, Hou, Yu, Hou, Yufang, Bai, Yuntao, Seid, Zachary, Zhao, Zhuoye, Wang, Zijian, Wang, Zijie J., Wang, Zirui, Wu, Ziyi
Language models demonstrate both quantitative improvement and new qualitative capabilities with increasing scale. Despite their potentially transformative impact, these new capabilities are as yet poorly characterized. In order to inform future research, prepare for disruptive new model capabilities, and ameliorate socially harmful effects, it is vital that we understand the present and near-future capabilities and limitations of language models. To address this challenge, we introduce the Beyond the Imitation Game benchmark (BIG-bench). BIG-bench currently consists of 204 tasks, contributed by 450 authors across 132 institutions. Task topics are diverse, drawing problems from linguistics, childhood development, math, common-sense reasoning, biology, physics, social bias, software development, and beyond. BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models. We evaluate the behavior of OpenAI's GPT models, Google-internal dense transformer architectures, and Switch-style sparse transformers on BIG-bench, across model sizes spanning millions to hundreds of billions of parameters. In addition, a team of human expert raters performed all tasks in order to provide a strong baseline. Findings include: model performance and calibration both improve with scale, but are poor in absolute terms (and when compared with rater performance); performance is remarkably similar across model classes, though with benefits from sparsity; tasks that improve gradually and predictably commonly involve a large knowledge or memorization component, whereas tasks that exhibit "breakthrough" behavior at a critical scale often involve multiple steps or components, or brittle metrics; social bias typically increases with scale in settings with ambiguous context, but this can be improved with prompting.