Plotting

 Mishra, Siddhartha


A universal approximation theorem for nonlinear resistive networks

arXiv.org Artificial Intelligence

Resistor networks have recently had a surge of interest as substrates for energy-efficient self-learning machines. This work studies the computational capabilities of these resistor networks. We show that electrical networks composed of voltage sources, linear resistors, diodes and voltage-controlled voltage sources (VCVS) can implement any continuous functions. To prove it, we assume that the circuit elements are ideal and that the conductances of variable resistors and the amplification factors of the VCVS's can take arbitrary values -- arbitrarily small or arbitrarily large. The constructive nature of our proof could also inform the design of such self-learning electrical networks.


Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating a class of inverse problems for PDEs

arXiv.org Artificial Intelligence

Physics informed neural networks (PINNs) have recently been very successfully applied for efficiently approximating inverse problems for PDEs. We focus on a particular class of inverse problems, the so-called data assimilation or unique continuation problems, and prove rigorous estimates on the generalization error of PINNs approximating them. An abstract framework is presented and conditional stability estimates for the underlying inverse problem are employed to derive the estimate on the PINN generalization error, providing rigorous justification for the use of PINNs in this context. The abstract framework is illustrated with examples of four prototypical linear PDEs. Numerical experiments, validating the proposed theory, are also presented.


Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating PDEs

arXiv.org Artificial Intelligence

Physics informed neural networks (PINNs) have recently been widely used for robust and accurate approximation of PDEs. We provide rigorous upper bounds on the generalization error of PINNs approximating solutions of the forward problem for PDEs. An abstract formalism is introduced and stability properties of the underlying PDE are leveraged to derive an estimate for the generalization error in terms of the training error and number of training samples. This abstract framework is illustrated with several examples of nonlinear PDEs. Numerical experiments, validating the proposed theory, are also presented.


Convolutional Neural Operators for robust and accurate learning of PDEs

arXiv.org Artificial Intelligence

Although very successfully used in conventional machine learning, convolution based neural network architectures -- believed to be inconsistent in function space -- have been largely ignored in the context of learning solution operators of PDEs. Here, we present novel adaptations for convolutional neural networks to demonstrate that they are indeed able to process functions as inputs and outputs. The resulting architecture, termed as convolutional neural operators (CNOs), is designed specifically to preserve its underlying continuous nature, even when implemented in a discretized form on a computer. We prove a universality theorem to show that CNOs can approximate operators arising in PDEs to desired accuracy. CNOs are tested on a novel suite of benchmarks, encompassing a diverse set of PDEs with possibly multi-scale solutions and are observed to significantly outperform baselines, paving the way for an alternative framework for robust and accurate operator learning. Our code is publicly available at https://github.com/bogdanraonic3/ConvolutionalNeuralOperator


Representation Equivalent Neural Operators: a Framework for Alias-free Operator Learning

arXiv.org Artificial Intelligence

Recently, operator learning, or learning mappings between infinite-dimensional function spaces, has garnered significant attention, notably in relation to learning partial differential equations from data. Conceptually clear when outlined on paper, neural operators necessitate discretization in the transition to computer implementations. This step can compromise their integrity, often causing them to deviate from the underlying operators. This research offers a fresh take on neural operators with a framework Representation equivalent Neural Operators (ReNO) designed to address these issues. At its core is the concept of operator aliasing, which measures inconsistency between neural operators and their discrete representations. We explore this for widely-used operator learning techniques. Our findings detail how aliasing introduces errors when handling different discretizations and grids and loss of crucial continuous structures. More generally, this framework not only sheds light on existing challenges but, given its constructive and broad nature, also potentially offers tools for developing new neural operators.


An operator preconditioning perspective on training in physics-informed machine learning

arXiv.org Artificial Intelligence

In this paper, we investigate the behavior of gradient descent algorithms in physics-informed machine learning methods like PINNs, which minimize residuals connected to partial differential equations (PDEs). Our key result is that the difficulty in training these models is closely related to the conditioning of a specific differential operator. This operator, in turn, is associated to the Hermitian square of the differential operator of the underlying PDE. If this operator is ill-conditioned, it results in slow or infeasible training. Therefore, preconditioning this operator is crucial. We employ both rigorous mathematical analysis and empirical evaluations to investigate various strategies, explaining how they better condition this critical operator, and consequently improve training.


A Structured Matrix Method for Nonequispaced Neural Operators

arXiv.org Artificial Intelligence

The computational efficiency of many neural operators, widely used for learning solutions of PDEs, relies on the fast Fourier transform (FFT) for performing spectral computations. However, as FFT is limited to equispaced (rectangular) grids, this limits the efficiency of such neural operators when applied to problems where the input and output functions need to be processed on general non-equispaced point distributions. We address this issue by proposing a novel method that leverages batch matrix multiplications to efficiently construct Vandermonde-structured matrices and compute forward and inverse transforms, on arbitrarily distributed points. An efficient implementation of such structured matrix methods is coupled with existing neural operator models to allow the processing of data on arbitrary non-equispaced distributions of points. With extensive empirical evaluation, we demonstrate that the proposed method allows one to extend neural operators to very general point distributions with significant gains in training speed over baselines, while retaining or improving accuracy.


How does over-squashing affect the power of GNNs?

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) are the state-of-the-art model for machine learning on graph-structured data. The most popular class of GNNs operate by exchanging information between adjacent nodes, and are known as Message Passing Neural Networks (MPNNs). Given their widespread use, understanding the expressive power of MPNNs is a key question. However, existing results typically consider settings with uninformative node features. In this paper, we provide a rigorous analysis to determine which function classes of node features can be learned by an MPNN of a given capacity. We do so by measuring the level of pairwise interactions between nodes that MPNNs allow for. This measure provides a novel quantitative characterization of the so-called over-squashing effect, which is observed to occur when a large volume of messages is aggregated into fixed-size vectors. Using our measure, we prove that, to guarantee sufficient communication between pairs of nodes, the capacity of the MPNN must be large enough, depending on properties of the input graph structure, such as commute times. For many relevant scenarios, our analysis results in impossibility statements in practice, showing that over-squashing hinders the expressive power of MPNNs. We validate our theoretical findings through extensive controlled experiments and ablation studies.


Neural Inverse Operators for Solving PDE Inverse Problems

arXiv.org Artificial Intelligence

A large class of inverse problems for PDEs are only well-defined as mappings from operators to functions. Existing operator learning frameworks map functions to functions and need to be modified to learn inverse maps from data. We propose a novel architecture termed Neural Inverse Operators (NIOs) to solve these PDE inverse problems. Motivated by the underlying mathematical structure, NIO is based on a suitable composition of DeepONets and FNOs to approximate mappings from operators to functions. A variety of experiments are presented to demonstrate that NIOs significantly outperform baselines and solve PDE inverse problems robustly, accurately and are several orders of magnitude faster than existing direct and PDE-constrained optimization methods.


Neural Oscillators are Universal

arXiv.org Artificial Intelligence

Coupled oscillators are being increasingly used as the basis of machine learning (ML) architectures, for instance in sequence modeling, graph representation learning and in physical neural networks that are used in analog ML devices. We introduce an abstract class of neural oscillators that encompasses these architectures and prove that neural oscillators are universal, i.e, they can approximate any continuous and casual operator mapping between time-varying functions, to desired accuracy. This universality result provides theoretical justification for the use of oscillator based ML systems. The proof builds on a fundamental result of independent interest, which shows that a combination of forced harmonic oscillators with a nonlinear read-out suffices to approximate the underlying operators.