Goto

Collaborating Authors

 Mishra, Rahul


Generating Visual Stimuli from EEG Recordings using Transformer-encoder based EEG encoder and GAN

arXiv.org Artificial Intelligence

In this study, we tackle a modern research challenge within the field of perceptual brain decoding, which revolves around synthesizing images from EEG signals using an adversarial deep learning framework. The specific objective is to recreate images belonging to various object categories by leveraging EEG recordings obtained while subjects view those images. To achieve this, we employ a Transformer-encoder based EEG encoder to produce EEG encodings, which serve as inputs to the generator component of the GAN network. Alongside the adversarial loss, we also incorporate perceptual loss to enhance the quality of the generated images.


FedSiKD: Clients Similarity and Knowledge Distillation: Addressing Non-i.i.d. and Constraints in Federated Learning

arXiv.org Artificial Intelligence

In recent years, federated learning (FL) has emerged as a promising technique for training machine learning models in a decentralized manner while also preserving data privacy. The non-independent and identically distributed (non-i.i.d.) nature of client data, coupled with constraints on client or edge devices, presents significant challenges in FL. Furthermore, learning across a high number of communication rounds can be risky and potentially unsafe for model exploitation. Traditional FL approaches may suffer from these challenges. Therefore, we introduce FedSiKD, which incorporates knowledge distillation (KD) within a similarity-based federated learning framework. As clients join the system, they securely share relevant statistics about their data distribution, promoting intra-cluster homogeneity. This enhances optimization efficiency and accelerates the learning process, effectively transferring knowledge between teacher and student models and addressing device constraints. FedSiKD outperforms state-of-the-art algorithms by achieving higher accuracy, exceeding by 25\% and 18\% for highly skewed data at $\alpha = {0.1,0.5}$ on the HAR and MNIST datasets, respectively. Its faster convergence is illustrated by a 17\% and 20\% increase in accuracy within the first five rounds on the HAR and MNIST datasets, respectively, highlighting its early-stage learning proficiency. Code is publicly available and hosted on GitHub (https://github.com/SimuEnv/FedSiKD)


Controllable Text Summarization: Unraveling Challenges, Approaches, and Prospects -- A Survey

arXiv.org Artificial Intelligence

Generic text summarization approaches often fail to address the specific intent and needs of individual users. Recently, scholarly attention has turned to the development of summarization methods that are more closely tailored and controlled to align with specific objectives and user needs. While a growing corpus of research is devoted towards a more controllable summarization, there is no comprehensive survey available that thoroughly explores the diverse controllable aspects or attributes employed in this context, delves into the associated challenges, and investigates the existing solutions. In this survey, we formalize the Controllable Text Summarization (CTS) task, categorize controllable aspects according to their shared characteristics and objectives, and present a thorough examination of existing methods and datasets within each category. Moreover, based on our findings, we uncover limitations and research gaps, while also delving into potential solutions and future directions for CTS.


POSHAN: Cardinal POS Pattern Guided Attention for News Headline Incongruence

arXiv.org Artificial Intelligence

Automatic detection of click-bait and incongruent news headlines is crucial to maintaining the reliability of the Web and has raised much research attention. However, most existing methods perform poorly when news headlines contain contextually important cardinal values, such as a quantity or an amount. In this work, we focus on this particular case and propose a neural attention based solution, which uses a novel cardinal Part of Speech (POS) tag pattern based hierarchical attention network, namely POSHAN, to learn effective representations of sentences in a news article. In addition, we investigate a novel cardinal phrase guided attention, which uses word embeddings of the contextually-important cardinal value and neighbouring words. In the experiments conducted on two publicly available datasets, we observe that the proposed methodgives appropriate significance to cardinal values and outperforms all the baselines. An ablation study of POSHAN shows that the cardinal POS-tag pattern-based hierarchical attention is very effective for the cases in which headlines contain cardinal values.