Not enough data to create a plot.
Try a different view from the menu above.
Ming Zhou
Dialog-to-Action: Conversational Question Answering Over a Large-Scale Knowledge Base
Daya Guo, Duyu Tang, Nan Duan, Ming Zhou, Jian Yin
We present an approach to map utterances in conversation to logical forms, which will be executed on a large-scale knowledge base. To handle enormous ellipsis phenomena in conversation, we introduce dialog memory management to manipulate historical entities, predicates, and logical forms when inferring the logical form of current utterances. Dialog memory management is embodied in a generative model, in which a logical form is interpreted in a top-down manner following a small and flexible grammar. We learn the model from denotations without explicit annotation of logical forms, and evaluate it on a large-scale dataset consisting of 200K dialogs over 12.8M entities. Results verify the benefits of modeling dialog memory, and show that our semantic parsing-based approach outperforms a memory network based encoder-decoder model by a huge margin.
Unified Language Model Pre-training for Natural Language Understanding and Generation
Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou, Hsiao-Wuen Hon
LM) that can be fine-tuned for both natural language understanding and generation tasks. The model is pre-trained using three types of language modeling tasks: unidirectional, bidirectional, and sequence-to-sequence prediction. The unified modeling is achieved by employing a shared Transformer network and utilizing specific self-attention masks to control what context the prediction conditions on.
A Tensorized Transformer for Language Modeling
Xindian Ma, Peng Zhang, Shuai Zhang, Nan Duan, Yuexian Hou, Ming Zhou, Dawei Song
Latest development of neural models has connected the encoder and decoder through a self-attention mechanism. In particular, Transformer, which is solely based on self-attention, has led to breakthroughs in Natural Language Processing (NLP) tasks. However, the multi-head attention mechanism, as a key component of Transformer, limits the effective deployment of the model to a resource-limited setting. In this paper, based on the ideas of tensor decomposition and parameters sharing, we propose a novel self-attention model (namely Multi-linear attention) with Block-Term Tensor Decomposition (BTD). We test and verify the proposed attention method on three language modeling tasks (i.e., PTB, WikiText-103 and Onebillion) and a neural machine translation task (i.e., WMT-2016 English-German). Multi-linear attention can not only largely compress the model parameters but also obtain performance improvements, compared with a number of language modeling approaches, such as Transformer, Transformer-XL, and Transformer with tensor train decomposition.
Dialog-to-Action: Conversational Question Answering Over a Large-Scale Knowledge Base
Daya Guo, Duyu Tang, Nan Duan, Ming Zhou, Jian Yin
We present an approach to map utterances in conversation to logical forms, which will be executed on a large-scale knowledge base. To handle enormous ellipsis phenomena in conversation, we introduce dialog memory management to manipulate historical entities, predicates, and logical forms when inferring the logical form of current utterances. Dialog memory management is embodied in a generative model, in which a logical form is interpreted in a top-down manner following a small and flexible grammar. We learn the model from denotations without explicit annotation of logical forms, and evaluate it on a large-scale dataset consisting of 200K dialogs over 12.8M entities. Results verify the benefits of modeling dialog memory, and show that our semantic parsing-based approach outperforms a memory network based encoder-decoder model by a huge margin.