Plotting

 Min, Kyungmin


Mitigating Hallucinations in Large Vision-Language Models via Summary-Guided Decoding

arXiv.org Artificial Intelligence

Large Vision-Language Models (LVLMs) demonstrate impressive capabilities in generating detailed and coherent responses from visual inputs. However, they are prone to generate hallucinations due to an over-reliance on language priors. To address this issue, we investigate the language priors in LVLMs and make two key observations: (1) Even when predicting the tokens associated with image-related part-of-speech (POS), models increasingly rely on linguistic priors as the token sequences grow, thereby amplifying hallucinations. (2) Methods that directly calibrate LVLM's output distribution to mitigate language priors can lead to a degradation in text quality or even exacerbate hallucinations. Based on these findings, we propose a novel method, Summary-Guided Decoding (SGD). This method naturally encourages the model to focus more on image information by reducing the text context through summaries, while controlling only the image-related POS tokens to maintain text quality. Through experiments, we demonstrate that SGD achieves state-of-the-art performance on object hallucination benchmarks. Furthermore, in terms of the trade-off between precision and recall, SGD achieves Pareto optimality among the existing methods. Lastly, we observe that although existing methods struggle to balance the reduction of object hallucinations with maintaining text quality, SGD demonstrates robustness in handling this challenge.


Return of EM: Entity-driven Answer Set Expansion for QA Evaluation

arXiv.org Artificial Intelligence

Recently, directly using large language models (LLMs) has been shown to be the most reliable method to evaluate QA models. However, it suffers from limited interpretability, high cost, and environmental harm. To address these, we propose to use soft exact match (EM) with entitydriven answer set expansion. Our approach expands the gold answer set to include diverse surface forms, based on the observation that the surface forms often follow particular patterns depending on the entity type. The experimental results show that our method outperforms traditional evaluation methods by a large margin. Moreover, the reliability of our evaluation method is comparable to that of LLM-based ones, while offering the benefits of high interpretability and reduced environmental harm.