Not enough data to create a plot.
Try a different view from the menu above.
Mihalcea, Rada
Psychologically-Inspired Causal Prompts
Lyu, Zhiheng, Jin, Zhijing, Mattern, Justus, Mihalcea, Rada, Sachan, Mrinmaya, Schoelkopf, Bernhard
NLP datasets are richer than just input-output pairs; rather, they carry causal relations between the input and output variables. In this work, we take sentiment classification as an example and look into the causal relations between the review (X) and sentiment (Y). As psychology studies show that language can affect emotion, different psychological processes are evoked when a person first makes a rating and then self-rationalizes their feeling in a review (where the sentiment causes the review, i.e., Y -> X), versus first describes their experience, and weighs the pros and cons to give a final rating (where the review causes the sentiment, i.e., X -> Y ). Furthermore, it is also a completely different psychological process if an annotator infers the original rating of the user by theory of mind (ToM) (where the review causes the rating, i.e., X -ToM-> Y ). In this paper, we verbalize these three causal mechanisms of human psychological processes of sentiment classification into three different causal prompts, and study (1) how differently they perform, and (2) what nature of sentiment classification data leads to agreement or diversity in the model responses elicited by the prompts. We suggest future work raise awareness of different causal structures in NLP tasks. Our code and data are at https://github.com/cogito233/psych-causal-prompt
Evaluating Parameter-Efficient Transfer Learning Approaches on SURE Benchmark for Speech Understanding
Li, Yingting, Mehrish, Ambuj, Zhao, Shuai, Bhardwaj, Rishabh, Zadeh, Amir, Majumder, Navonil, Mihalcea, Rada, Poria, Soujanya
Fine-tuning is widely used as the default algorithm for transfer learning from pre-trained models. Parameter inefficiency can however arise when, during transfer learning, all the parameters of a large pre-trained model need to be updated for individual downstream tasks. As the number of parameters grows, fine-tuning is prone to overfitting and catastrophic forgetting. In addition, full fine-tuning can become prohibitively expensive when the model is used for many tasks. To mitigate this issue, parameter-efficient transfer learning algorithms, such as adapters and prefix tuning, have been proposed as a way to introduce a few trainable parameters that can be plugged into large pre-trained language models such as BERT, and HuBERT. In this paper, we introduce the Speech UndeRstanding Evaluation (SURE) benchmark for parameter-efficient learning for various speech-processing tasks. Additionally, we introduce a new adapter, ConvAdapter, based on 1D convolution. We show that ConvAdapter outperforms the standard adapters while showing comparable performance against prefix tuning and LoRA with only 0.94% of trainable parameters on some of the task in SURE. We further explore the effectiveness of parameter efficient transfer learning for speech synthesis task such as Text-to-Speech (TTS).
Natural Language Processing for Policymaking
Jin, Zhijing, Mihalcea, Rada
Language is an important form of data in politics. Constituents express their stances and needs in text such as social media and survey responses. Politicians conduct campaigns through debates, statements of policy positions, and social media. Government staff needs to compile information from various documents to assist in decision-making. Textual data is also prevalent through the documents and debates in the legislation process, negotiations and treaties to resolve international conflicts, and media such as news reports, social media, party platforms, and manifestos. Natural language processing (NLP) is the study of computational methods to automatically analyze text and extract meaningful information for subsequent analysis. The importance of NLP for policymaking has been highlighted since the last century (Gigley, 1993).
Understanding Stereotypes in Language Models: Towards Robust Measurement and Zero-Shot Debiasing
Mattern, Justus, Jin, Zhijing, Sachan, Mrinmaya, Mihalcea, Rada, Schรถlkopf, Bernhard
Generated texts from large pretrained language models have been shown to exhibit a variety of harmful, human-like biases about various demographics. These findings prompted large efforts aiming to understand and measure such effects, with the goal of providing benchmarks that can guide the development of techniques mitigating these stereotypical associations. However, as recent research has pointed out, the current benchmarks lack a robust experimental setup, consequently hindering the inference of meaningful conclusions from their evaluation metrics. In this paper, we extend these arguments and demonstrate that existing techniques and benchmarks aiming to measure stereotypes tend to be inaccurate and consist of a high degree of experimental noise that severely limits the knowledge we can gain from benchmarking language models based on them. Accordingly, we propose a new framework for robustly measuring and quantifying biases exhibited by generative language models. Finally, we use this framework to investigate GPT-3's occupational gender bias and propose prompting techniques for mitigating these biases without the need for fine-tuning.
Logical Fallacy Detection
Jin, Zhijing, Lalwani, Abhinav, Vaidhya, Tejas, Shen, Xiaoyu, Ding, Yiwen, Lyu, Zhiheng, Sachan, Mrinmaya, Mihalcea, Rada, Schรถlkopf, Bernhard
Reasoning is central to human intelligence. However, fallacious arguments are common, and some exacerbate problems such as spreading misinformation about climate change. In this paper, we propose the task of logical fallacy detection, and provide a new dataset (Logic) of logical fallacies generally found in text, together with an additional challenge set for detecting logical fallacies in climate change claims (LogicClimate). Detecting logical fallacies is a hard problem as the model must understand the underlying logical structure of the argument. We find that existing pretrained large language models perform poorly on this task. In contrast, we show that a simple structure-aware classifier outperforms the best language model by 5.46% on Logic and 4.51% on LogicClimate. We encourage future work to explore this task as (a) it can serve as a new reasoning challenge for language models, and (b) it can have potential applications in tackling the spread of misinformation. Our dataset and code are available at https://github.com/causalNLP/logical-fallacy
Multiview Contextual Commonsense Inference: A New Dataset and Task
Shen, Siqi, Ghosal, Deepanway, Majumder, Navonil, Lim, Henry, Mihalcea, Rada, Poria, Soujanya
Contextual commonsense inference is the task of generating various types of explanations around the events in a dyadic dialogue, including cause, motivation, emotional reaction, and others. Producing a coherent and non-trivial explanation requires awareness of the dialogue's structure and of how an event is grounded in the context. In this work, we create CICEROv2, a dataset consisting of 8,351 instances from 2,379 dialogues, containing multiple human-written answers for each contextual commonsense inference question, representing a type of explanation on cause, subsequent event, motivation, and emotional reaction. We show that the inferences in CICEROv2 are more semantically diverse than other contextual commonsense inference datasets. To solve the inference task, we propose a collection of pre-training objectives, including concept denoising and utterance sorting to prepare a pre-trained model for the downstream contextual commonsense inference task. Our results show that the proposed pre-training objectives are effective at adapting the pre-trained T5-Large model for the contextual commonsense inference task.
STaCK: Sentence Ordering with Temporal Commonsense Knowledge
Ghosal, Deepanway, Majumder, Navonil, Mihalcea, Rada, Poria, Soujanya
Sentence order prediction is the task of finding the correct order of sentences in a randomly ordered document. Correctly ordering the sentences requires an understanding of coherence with respect to the chronological sequence of events described in the text. Document-level contextual understanding and commonsense knowledge centered around these events are often essential in uncovering this coherence and predicting the exact chronological order. In this paper, we introduce STaCK -- a framework based on graph neural networks and temporal commonsense knowledge to model global information and predict the relative order of sentences. Our graph network accumulates temporal evidence using knowledge of `past' and `future' and formulates sentence ordering as a constrained edge classification problem. We report results on five different datasets, and empirically show that the proposed method is naturally suitable for order prediction. The implementation of this work is publicly available at: https://github.com/declare-lab/sentence-ordering.
Exemplars-guided Empathetic Response Generation Controlled by the Elements of Human Communication
Majumder, Navonil, Ghosal, Deepanway, Hazarika, Devamanyu, Gelbukh, Alexander, Mihalcea, Rada, Poria, Soujanya
The majority of existing methods for empathetic response generation rely on the emotion of the context to generate empathetic responses. However, empathy is much more than generating responses with an appropriate emotion. It also often entails subtle expressions of understanding and personal resonance with the situation of the other interlocutor. Unfortunately, such qualities are difficult to quantify and the datasets lack the relevant annotations. To address this issue, in this paper we propose an approach that relies on exemplars to cue the generative model on fine stylistic properties that signal empathy to the interlocutor. To this end, we employ dense passage retrieval to extract relevant exemplary responses from the training set. Three elements of human communication -- emotional presence, interpretation, and exploration, and sentiment are additionally introduced using synthetic labels to guide the generation towards empathy. The human evaluation is also extended by these elements of human communication. We empirically show that these approaches yield significant improvements in empathetic response quality in terms of both automated and human-evaluated metrics. The implementation is available at https://github.com/declare-lab/exemplary-empathy.
How Good Is NLP? A Sober Look at NLP Tasks through the Lens of Social Impact
Jin, Zhijing, Chauhan, Geeticka, Tse, Brian, Sachan, Mrinmaya, Mihalcea, Rada
Recent years have seen many breakthroughs in natural language processing (NLP), transitioning it from a mostly theoretical field to one with many real-world applications. Noting the rising number of applications of other machine learning and AI techniques with pervasive societal impact, we anticipate the rising importance of developing NLP technologies for social good. Inspired by theories in moral philosophy and global priorities research, we aim to promote a guideline for social good in the context of NLP. We lay the foundations via moral philosophy's definition of social good, propose a framework to evaluate NLP tasks' direct and indirect real-world impact, and adopt the methodology of global priorities research to identify priority causes for NLP research. Finally, we use our theoretical framework to provide some practical guidelines for future NLP research for social good. Our data and codes are available at http://github.com/zhijing-jin/nlp4sg_acl2021
CIDER: Commonsense Inference for Dialogue Explanation and Reasoning
Ghosal, Deepanway, Hong, Pengfei, Shen, Siqi, Majumder, Navonil, Mihalcea, Rada, Poria, Soujanya
Commonsense inference to understand and explain human language is a fundamental research problem in natural language processing. Explaining human conversations poses a great challenge as it requires contextual understanding, planning, inference, and several aspects of reasoning including causal, temporal, and commonsense reasoning. In this work, we introduce CIDER -- a manually curated dataset that contains dyadic dialogue explanations in the form of implicit and explicit knowledge triplets inferred using contextual commonsense inference. Extracting such rich explanations from conversations can be conducive to improving several downstream applications. The annotated triplets are categorized by the type of commonsense knowledge present (e.g., causal, conditional, temporal). We set up three different tasks conditioned on the annotated dataset: Dialogue-level Natural Language Inference, Span Extraction, and Multi-choice Span Selection. Baseline results obtained with transformer-based models reveal that the tasks are difficult, paving the way for promising future research. The dataset and the baseline implementations are publicly available at https://github.com/declare-lab/CIDER.