Not enough data to create a plot.
Try a different view from the menu above.
Michael I. Jordan
Privacy Aware Learning
Martin J. Wainwright, Michael I. Jordan, John C. Duchi
We study statistical risk minimization problems under a version of privacy in which the data is kept confidential even from the learner. In this local privacy framework, we establish sharp upper and lower bounds on the convergence rates of statistical estimation procedures. As a consequence, we exhibit a precise tradeoff between the amount of privacy the data preserves and the utility, measured by convergence rate, of any statistical estimator.
Unsupervised Domain Adaptation with Residual Transfer Networks
Mingsheng Long, Han Zhu, Jianmin Wang, Michael I. Jordan
The recent success of deep neural networks relies on massive amounts of labeled data. For a target task where labeled data is unavailable, domain adaptation can transfer a learner from a different source domain. In this paper, we propose a new approach to domain adaptation in deep networks that can jointly learn adaptive classifiers and transferable features from labeled data in the source domain and unlabeled data in the target domain. We relax a shared-classifier assumption made by previous methods and assume that the source classifier and target classifier differ by a residual function. We enable classifier adaptation by plugging several layers into deep network to explicitly learn the residual function with reference to the target classifier. We fuse features of multiple layers with tensor product and embed them into reproducing kernel Hilbert spaces to match distributions for feature adaptation. The adaptation can be achieved in most feed-forward models by extending them with new residual layers and loss functions, which can be trained efficiently via back-propagation. Empirical evidence shows that the new approach outperforms state of the art methods on standard domain adaptation benchmarks.
Cyclades: Conflict-free Asynchronous Machine Learning
Xinghao Pan, Maximilian Lam, Stephen Tu, Dimitris Papailiopoulos, Ce Zhang, Michael I. Jordan, Kannan Ramchandran, Christopher Rรฉ
In all of these studies, classic algorithms are parallelized by simply running parallel and asynchronous model updates without locks. These lock-free, asynchronous algorithms exhibit speedups even when applied to large, non-convex problems, as demonstrated by deep learning systems such as Google's Downpour SGD [6] and Microsoft's Project Adam [4]. While these techniques have been remarkably successful, many of the above papers require delicate and tailored analyses to quantify the benefits of asynchrony for each particular learning task. Moreover, in non-convex settings, we currently have little quantitative insight into how much speedup is gained from asynchrony.
Non-convex Finite-Sum Optimization Via SCSG Methods
Lihua Lei, Cheng Ju, Jianbo Chen, Michael I. Jordan
Conditional Adversarial Domain Adaptation
Mingsheng Long, ZHANGJIE CAO, Jianmin Wang, Michael I. Jordan
Adversarial learning has been embedded into deep networks to learn disentangled and transferable representations for domain adaptation. Existing adversarial domain adaptation methods may not effectively align different domains of multimodal distributions native in classification problems. In this paper, we present conditional adversarial domain adaptation, a principled framework that conditions the adversarial adaptation models on discriminative information conveyed in the classifier predictions. Conditional domain adversarial networks (CDANs) are designed with two novel conditioning strategies: multilinear conditioning that captures the crosscovariance between feature representations and classifier predictions to improve the discriminability, and entropy conditioning that controls the uncertainty of classifier predictions to guarantee the transferability. With theoretical guarantees and a few lines of codes, the approach has exceeded state-of-the-art results on five datasets.
Online control of the false discovery rate with decaying memory
Aaditya Ramdas, Fanny Yang, Martin J. Wainwright, Michael I. Jordan
In the online multiple testing problem, p-values corresponding to different null hypotheses are observed one by one, and the decision of whether or not to reject the current hypothesis must be made immediately, after which the next p-value is observed. Alpha-investing algorithms to control the false discovery rate (FDR), formulated by Foster and Stine, have been generalized and applied to many settings, including quality-preserving databases in science and multiple A/B or multi-armed bandit tests for internet commerce. This paper improves the class of generalized alpha-investing algorithms (GAI) in four ways: (a) we show how to uniformly improve the power of the entire class of monotone GAI procedures by awarding more alpha-wealth for each rejection, giving a win-win resolution to a recent dilemma raised by Javanmard and Montanari, (b) we demonstrate how to incorporate prior weights to indicate domain knowledge of which hypotheses are likely to be non-null, (c) we allow for differing penalties for false discoveries to indicate that some hypotheses may be more important than others, (d) we define a new quantity called the decaying memory false discovery rate (mem-FDR) that may be more meaningful for truly temporal applications, and which alleviates problems that we describe and refer to as "piggybacking" and "alpha-death." Our GAI++ algorithms incorporate all four generalizations simultaneously, and reduce to more powerful variants of earlier algorithms when the weights and decay are all set to unity. Finally, we also describe a simple method to derive new online FDR rules based on an estimated false discovery proportion.
Gradient Descent Can Take Exponential Time to Escape Saddle Points
Simon S. Du, Chi Jin, Jason D. Lee, Michael I. Jordan, Aarti Singh, Barnabas Poczos
Although gradient descent (GD) almost always escapes saddle points asymptotically [Lee et al., 2016], this paper shows that even with fairly natural random initialization schemes and non-pathological functions, GD can be significantly slowed down by saddle points, taking exponential time to escape. On the other hand, gradient descent with perturbations [Ge et al., 2015, Jin et al., 2017] is not slowed down by saddle points--it can find an approximate local minimizer in polynomial time. This result implies that GD is inherently slower than perturbed GD, and justifies the importance of adding perturbations for efficient non-convex optimization. While our focus is theoretical, we also present experiments that illustrate our theoretical findings.
Non-convex Finite-Sum Optimization Via SCSG Methods
Lihua Lei, Cheng Ju, Jianbo Chen, Michael I. Jordan