Plotting

 Mian, Ajmal


Q-Cogni: An Integrated Causal Reinforcement Learning Framework

arXiv.org Artificial Intelligence

We present Q-Cogni, an algorithmically integrated causal reinforcement learning framework that redesigns Q-Learning with an autonomous causal structure discovery method to improve the learning process with causal inference. Q-Cogni achieves optimal learning with a pre-learned structural causal model of the environment that can be queried during the learning process to infer cause-and-effect relationships embedded in a state-action space. We leverage on the sample efficient techniques of reinforcement learning, enable reasoning about a broader set of policies and bring higher degrees of interpretability to decisions made by the reinforcement learning agent. We apply Q-Cogni on the Vehicle Routing Problem (VRP) and compare against state-of-the-art reinforcement learning algorithms. We report results that demonstrate better policies, improved learning efficiency and superior interpretability of the agent's decision making. We also compare this approach with traditional shortest-path search algorithms and demonstrate the benefits of our causal reinforcement learning framework to high dimensional problems. Finally, we apply Q-Cogni to derive optimal routing decisions for taxis in New York City using the Taxi & Limousine Commission trip record data and compare with shortest-path search, reporting results that show 85% of the cases with an equal or better policy derived from Q-Cogni in a real-world domain.


Learning Sparse Temporal Video Mapping for Action Quality Assessment in Floor Gymnastics

arXiv.org Artificial Intelligence

Abstract--Athlete performance measurement in sports videos requires modeling long sequences since the entire spatio-temporal progression contributes dominantly to the performance. It is crucial to comprehend local discriminative spatial dependencies and global semantics for accurate evaluation. However, existing benchmark datasets mainly incorporate sports where the performance lasts only a few seconds. Consequently, state-ofthe-art sports quality assessment methods specifically focus on spatial structure. Although they achieve high performance in short-term sports, they are unable to model prolonged video sequences and fail to achieve similar performance in long-term sports. To facilitate such analysis, we introduce a new dataset, coined AGF-Olympics, that incorporates artistic gymnastic floor routines. AFG-Olympics provides highly challenging scenarios with extensive background, viewpoint, and scale variations over an extended sample duration of up to 2 minutes. In addition, we propose a discriminative attention module to map the dense feature space into a sparse representation by disentangling complex associations. Extensive experiments indicate that our proposed module provides an effective way to embed long-range spatial and temporal correlation semantics. AQA conceptual workflow: discriminative non-local attention focuses on latent spatio-temporal association.


Fast Parallel Bayesian Network Structure Learning

arXiv.org Artificial Intelligence

Bayesian networks (BNs) are a widely used graphical model in machine learning for representing knowledge with uncertainty. The mainstream BN structure learning methods require performing a large number of conditional independence (CI) tests. The learning process is very time-consuming, especially for high-dimensional problems, which hinders the adoption of BNs to more applications. Existing works attempt to accelerate the learning process with parallelism, but face issues including load unbalancing, costly atomic operations and dominant parallel overhead. In this paper, we propose a fast solution named Fast-BNS on multi-core CPUs to enhance the efficiency of the BN structure learning. Fast-BNS is powered by a series of efficiency optimizations including (i) designing a dynamic work pool to monitor the processing of edges and to better schedule the workloads among threads, (ii) grouping the CI tests of the edges with the same endpoints to reduce the number of unnecessary CI tests, (iii) using a cache-friendly data storage to improve the memory efficiency, and (iv) generating the conditioning sets on-the-fly to avoid extra memory consumption. A comprehensive experimental study shows that the sequential version of Fast-BNS is up to 50 times faster than its counterpart, and the parallel version of Fast-BNS achieves 4.8 to 24.5 times speedup over the state-of-the-art multi-threaded solution. Moreover, Fast-BNS has a good scalability to the network size as well as sample size. Fast-BNS source code is freely available at https://github.com/jjiantong/FastBN.


Fast Parallel Exact Inference on Bayesian Networks: Poster

arXiv.org Artificial Intelligence

Bayesian networks (BNs) are attractive, because they are graphical and interpretable machine learning models. However, exact inference on BNs is time-consuming, especially for complex problems. To improve the efficiency, we propose a fast BN exact inference solution named Fast-BNI on multi-core CPUs. Fast-BNI enhances the efficiency of exact inference through hybrid parallelism that tightly integrates coarse- and fine-grained parallelism. We also propose techniques to further simplify the bottleneck operations of BN exact inference. Fast-BNI source code is freely available at https://github.com/jjiantong/FastBN.


CAMERAS: Enhanced Resolution And Sanity preserving Class Activation Mapping for image saliency

arXiv.org Artificial Intelligence

Backpropagation image saliency aims at explaining model predictions by estimating model-centric importance of individual pixels in the input. However, class-insensitivity of the earlier layers in a network only allows saliency computation with low resolution activation maps of the deeper layers, resulting in compromised image saliency. Remedifying this can lead to sanity failures. We propose CAMERAS, a technique to compute high-fidelity backpropagation saliency maps without requiring any external priors and preserving the map sanity. Our method systematically performs multi-scale accumulation and fusion of the activation maps and backpropagated gradients to compute precise saliency maps. From accurate image saliency to articulation of relative importance of input features for different models, and precise discrimination between model perception of visually similar objects, our high-resolution mapping offers multiple novel insights into the black-box deep visual models, which are presented in the paper. We also demonstrate the utility of our saliency maps in adversarial setup by drastically reducing the norm of attack signals by focusing them on the precise regions identified by our maps. Our method also inspires new evaluation metrics and a sanity check for this developing research direction. Code is available here https://github.com/VisMIL/CAMERAS


Attack to Fool and Explain Deep Networks

arXiv.org Artificial Intelligence

Deep visual models are susceptible to adversarial perturbations to inputs. Although these signals are carefully crafted, they still appear noise-like patterns to humans. This observation has led to the argument that deep visual representation is misaligned with human perception. We counter-argue by providing evidence of human-meaningful patterns in adversarial perturbations. We first propose an attack that fools a network to confuse a whole category of objects (source class) with a target label. Our attack also limits the unintended fooling by samples from non-sources classes, thereby circumscribing human-defined semantic notions for network fooling. We show that the proposed attack not only leads to the emergence of regular geometric patterns in the perturbations, but also reveals insightful information about the decision boundaries of deep models. Exploring this phenomenon further, we alter the `adversarial' objective of our attack to use it as a tool to `explain' deep visual representation. We show that by careful channeling and projection of the perturbations computed by our method, we can visualize a model's understanding of human-defined semantic notions. Finally, we exploit the explanability properties of our perturbations to perform image generation, inpainting and interactive image manipulation by attacking adversarialy robust `classifiers'.In all, our major contribution is a novel pragmatic adversarial attack that is subsequently transformed into a tool to interpret the visual models. The article also makes secondary contributions in terms of establishing the utility of our attack beyond the adversarial objective with multiple interesting applications.


LSDAT: Low-Rank and Sparse Decomposition for Decision-based Adversarial Attack

arXiv.org Machine Learning

We propose LSDAT, an image-agnostic decision-based black-box attack that exploits low-rank and sparse decomposition (LSD) to dramatically reduce the number of queries and achieve superior fooling rates compared to the state-of-the-art decision-based methods under given imperceptibility constraints. LSDAT crafts perturbations in the low-dimensional subspace formed by the sparse component of the input sample and that of an adversarial sample to obtain query-efficiency. The specific perturbation of interest is obtained by traversing the path between the input and adversarial sparse components. It is set forth that the proposed sparse perturbation is the most aligned sparse perturbation with the shortest path from the input sample to the decision boundary for some initial adversarial sample (the best sparse approximation of shortest path, likely to fool the model). Theoretical analyses are provided to justify the functionality of LSDAT. Unlike other dimensionality reduction based techniques aimed at improving query efficiency (e.g, ones based on FFT), LSD works directly in the image pixel domain to guarantee that non-$\ell_2$ constraints, such as sparsity, are satisfied. LSD offers better control over the number of queries and provides computational efficiency as it performs sparse decomposition of the input and adversarial images only once to generate all queries. We demonstrate $\ell_0$, $\ell_2$ and $\ell_\infty$ bounded attacks with LSDAT to evince its efficiency compared to baseline decision-based attacks in diverse low-query budget scenarios as outlined in the experiments.


Image Colorization: A Survey and Dataset

arXiv.org Artificial Intelligence

Image colorization is an essential image processing and computer vision branch to colorize images and videos. Recently, deep learning techniques progressed notably for image colorization. This article presents a comprehensive survey of recent state-of-the-art colorization using deep learning algorithms, describing their fundamental block architectures in terms of skip connections, input \etc as well as optimizers, loss functions, training protocols, and training data \etc Generally, we can roughly categorize the existing colorization techniques into seven classes. Besides, we also provide some additional essential issues, such as benchmark datasets and evaluation metrics. We also introduce a new dataset specific to colorization and perform an experimental evaluation of the publicly available methods. In the last section, we discuss the limitations, possible solutions, and future research directions of the rapidly evolving topic of deep image colorization that the community should further address. Dataset and Codes for evaluation will be publicly available at https://github.com/saeed-anwar/ColorSurvey


Orthogonal Deep Models As Defense Against Black-Box Attacks

arXiv.org Machine Learning

Deep learning has demonstrated state-of-the-art performance for a variety of challenging computer vision tasks. On one hand, this has enabled deep visual models to pave the way for a plethora of critical applications like disease prognostics and smart surveillance. On the other, deep learning has also been found vulnerable to adversarial attacks, which calls for new techniques to defend deep models against these attacks. Among the attack algorithms, the black-box schemes are of serious practical concern since they only need publicly available knowledge of the targeted model. We carefully analyze the inherent weakness of deep models in black-box settings where the attacker may develop the attack using a model similar to the targeted model. Based on our analysis, we introduce a novel gradient regularization scheme that encourages the internal representation of a deep model to be orthogonal to another, even if the architectures of the two models are similar. Our unique constraint allows a model to concomitantly endeavour for higher accuracy while maintaining near orthogonal alignment of gradients with respect to a reference model. Detailed empirical study verifies that controlled misalignment of gradients under our orthogonality objective significantly boosts a model's robustness against transferable black-box adversarial attacks. In comparison to regular models, the orthogonal models are significantly more robust to a range of $l_p$ norm bounded perturbations. We verify the effectiveness of our technique on a variety of large-scale models.