Not enough data to create a plot.
Try a different view from the menu above.
Mian, Ajmal
Backdoor-based Explainable AI Benchmark for High Fidelity Evaluation of Attribution Methods
Yang, Peiyu, Akhtar, Naveed, Jiang, Jiantong, Mian, Ajmal
Attribution methods compute importance scores for input features to explain the output predictions of deep models. However, accurate assessment of attribution methods is challenged by the lack of benchmark fidelity for attributing model predictions. Moreover, other confounding factors in attribution estimation, including the setup choices of post-processing techniques and explained model predictions, further compromise the reliability of the evaluation. In this work, we first identify a set of fidelity criteria that reliable benchmarks for attribution methods are expected to fulfill, thereby facilitating a systematic assessment of attribution benchmarks. Next, we introduce a Backdoor-based eXplainable AI benchmark (BackX) that adheres to the desired fidelity criteria. We theoretically establish the superiority of our approach over the existing benchmarks for well-founded attribution evaluation. With extensive analysis, we also identify a setup for a consistent and fair benchmarking of attribution methods across different underlying methodologies. This setup is ultimately employed for a comprehensive comparison of existing methods using our BackX benchmark. Finally, our analysis also provides guidance for defending against backdoor attacks with the help of attribution methods.
Severity Controlled Text-to-Image Generative Model Bias Manipulation
Vice, Jordan, Akhtar, Naveed, Hartley, Richard, Mian, Ajmal
Text-to-image (T2I) generative models are gaining wide popularity, especially in public domains. However, their intrinsic bias and potential malicious manipulations remain under-explored. Charting the susceptibility of T2I models to such manipulation, we first expose the new possibility of a dynamic and computationally efficient exploitation of model bias by targeting the embedded language models. By leveraging mathematical foundations of vector algebra, our technique enables a scalable and convenient control over the severity of output manipulation through model bias. As a by-product, this control also allows a form of precise prompt engineering to generate images which are generally implausible with regular text prompts. We also demonstrate a constructive application of our manipulation for balancing the frequency of generated classes - as in model debiasing. Our technique does not require training and is also framed as a backdoor attack with severity control using semantically-null text triggers in the prompts. With extensive analysis, we present interesting qualitative and quantitative results to expose potential manipulation possibilities for T2I models. Key-words: Text-to-Image Models, Generative Models, Backdoor Attacks, Prompt Engineering, Bias
A Comprehensive Overview of Large Language Models
Naveed, Humza, Khan, Asad Ullah, Qiu, Shi, Saqib, Muhammad, Anwar, Saeed, Usman, Muhammad, Akhtar, Naveed, Barnes, Nick, Mian, Ajmal
Large Language Models (LLMs) have recently demonstrated remarkable capabilities in natural language processing tasks and beyond. This success of LLMs has led to a large influx of research contributions in this direction. These works encompass diverse topics such as architectural innovations, better training strategies, context length improvements, fine-tuning, multi-modal LLMs, robotics, datasets, benchmarking, efficiency, and more. With the rapid development of techniques and regular breakthroughs in LLM research, it has become considerably challenging to perceive the bigger picture of the advances in this direction. Considering the rapidly emerging plethora of literature on LLMs, it is imperative that the research community is able to benefit from a concise yet comprehensive overview of the recent developments in this field. This article provides an overview of the existing literature on a broad range of LLM-related concepts. Our self-contained comprehensive overview of LLMs discusses relevant background concepts along with covering the advanced topics at the frontier of research in LLMs. This review article is intended to not only provide a systematic survey but also a quick comprehensive reference for the researchers and practitioners to draw insights from extensive informative summaries of the existing works to advance the LLM research.
Dual Student Networks for Data-Free Model Stealing
Beetham, James, Kardan, Navid, Mian, Ajmal, Shah, Mubarak
Data-free model stealing aims to replicate a target model without direct access to either the training data or the target model. To accomplish this, existing methods use a generator to produce samples in order to train a student model to match the target model outputs. To this end, the two main challenges are estimating gradients of the target model without access to its parameters, and generating a diverse set of training samples that thoroughly explores the input space. We propose a Dual Student method where two students are symmetrically trained in order to provide the generator a criterion to generate samples that the two students disagree on. On one hand, disagreement on a sample implies at least one student has classified the sample incorrectly when compared to the target model. This incentive towards disagreement implicitly encourages the generator to explore more diverse regions of the input space. On the other hand, our method utilizes gradients of student models to indirectly estimate gradients of the target model. We show that this novel training objective for the generator network is equivalent to optimizing a lower bound on the generator's loss if we had access to the target model gradients. In other words, our method alters the standard data-free model stealing paradigm by substituting the target model with a separate student model, thereby creating a lower bound which can be directly optimized without additional target model queries or separate synthetic datasets. We show that our new optimization framework provides more accurate gradient estimation of the target model and better accuracies on benchmark classification datasets.
Quantum-Inspired Machine Learning: a Survey
Huynh, Larry, Hong, Jin, Mian, Ajmal, Suzuki, Hajime, Wu, Yanqiu, Camtepe, Seyit
Quantum-inspired Machine Learning (QiML) is a burgeoning field, receiving global attention from researchers for its potential to leverage principles of quantum mechanics within classical computational frameworks. However, current review literature often presents a superficial exploration of QiML, focusing instead on the broader Quantum Machine Learning (QML) field. In response to this gap, this survey provides an integrated and comprehensive examination of QiML, exploring QiML's diverse research domains including tensor network simulations, dequantized algorithms, and others, showcasing recent advancements, practical applications, and illuminating potential future research avenues. Further, a concrete definition of QiML is established by analyzing various prior interpretations of the term and their inherent ambiguities. As QiML continues to evolve, we anticipate a wealth of future developments drawing from quantum mechanics, quantum computing, and classical machine learning, enriching the field further. This survey serves as a guide for researchers and practitioners alike, providing a holistic understanding of QiML's current landscape and future directions.
BAGM: A Backdoor Attack for Manipulating Text-to-Image Generative Models
Vice, Jordan, Akhtar, Naveed, Hartley, Richard, Mian, Ajmal
The rise in popularity of text-to-image generative artificial intelligence (AI) has attracted widespread public interest. We demonstrate that this technology can be attacked to generate content that subtly manipulates its users. We propose a Backdoor Attack on text-to-image Generative Models (BAGM), which upon triggering, infuses the generated images with manipulative details that are naturally blended in the content. Our attack is the first to target three popular text-to-image generative models across three stages of the generative process by modifying the behaviour of the embedded tokenizer, the language model or the image generative model. Based on the penetration level, BAGM takes the form of a suite of attacks that are referred to as surface, shallow and deep attacks in this article. Given the existing gap within this domain, we also contribute a comprehensive set of quantitative metrics designed specifically for assessing the effectiveness of backdoor attacks on text-to-image models. The efficacy of BAGM is established by attacking state-of-the-art generative models, using a marketing scenario as the target domain. To that end, we contribute a dataset of branded product images. Our embedded backdoors increase the bias towards the target outputs by more than five times the usual, without compromising the model robustness or the generated content utility. By exposing generative AI's vulnerabilities, we encourage researchers to tackle these challenges and practitioners to exercise caution when using pre-trained models. Relevant code, input prompts and supplementary material can be found at https://github.com/JJ-Vice/BAGM, and the dataset is available at: https://ieee-dataport.org/documents/marketable-foods-mf-dataset. Keywords: Generative Artificial Intelligence, Generative Models, Text-to-Image generation, Backdoor Attacks, Trojan, Stable Diffusion.
Slice Transformer and Self-supervised Learning for 6DoF Localization in 3D Point Cloud Maps
Ibrahim, Muhammad, Akhtar, Naveed, Anwar, Saeed, Wise, Michael, Mian, Ajmal
Precise localization is critical for autonomous vehicles. We present a self-supervised learning method that employs Transformers for the first time for the task of outdoor localization using LiDAR data. We propose a pre-text task that reorganizes the slices of a $360^\circ$ LiDAR scan to leverage its axial properties. Our model, called Slice Transformer, employs multi-head attention while systematically processing the slices. To the best of our knowledge, this is the first instance of leveraging multi-head attention for outdoor point clouds. We additionally introduce the Perth-WA dataset, which provides a large-scale LiDAR map of Perth city in Western Australia, covering $\sim$4km$^2$ area. Localization annotations are provided for Perth-WA. The proposed localization method is thoroughly evaluated on Perth-WA and Appollo-SouthBay datasets. We also establish the efficacy of our self-supervised learning approach for the common downstream task of object classification using ModelNet40 and ScanNN datasets. The code and Perth-WA data will be publicly released.
Spectrum-guided Multi-granularity Referring Video Object Segmentation
Miao, Bo, Bennamoun, Mohammed, Gao, Yongsheng, Mian, Ajmal
Current referring video object segmentation (R-VOS) techniques extract conditional kernels from encoded (low-resolution) vision-language features to segment the decoded high-resolution features. We discovered that this causes significant feature drift, which the segmentation kernels struggle to perceive during the forward computation. This negatively affects the ability of segmentation kernels. To address the drift problem, we propose a Spectrum-guided Multi-granularity (SgMg) approach, which performs direct segmentation on the encoded features and employs visual details to further optimize the masks. In addition, we propose Spectrum-guided Cross-modal Fusion (SCF) to perform intra-frame global interactions in the spectral domain for effective multimodal representation. Finally, we extend SgMg to perform multi-object R-VOS, a new paradigm that enables simultaneous segmentation of multiple referred objects in a video. This not only makes R-VOS faster, but also more practical. Extensive experiments show that SgMg achieves state-of-the-art performance on four video benchmark datasets, outperforming the nearest competitor by 2.8% points on Ref-YouTube-VOS. Our extended SgMg enables multi-object R-VOS, runs about 3 times faster while maintaining satisfactory performance. Code is available at https://github.com/bo-miao/SgMg.
Vision Transformer Based Model for Describing a Set of Images as a Story
Malakan, Zainy M., Hassan, Ghulam Mubashar, Mian, Ajmal
Visual Story-Telling is the process of forming a multi-sentence story from a set of images. Appropriately including visual variation and contextual information captured inside the input images is one of the most challenging aspects of visual storytelling. Consequently, stories developed from a set of images often lack cohesiveness, relevance, and semantic relationship. In this paper, we propose a novel Vision Transformer Based Model for describing a set of images as a story. The proposed method extracts the distinct features of the input images using a Vision Transformer (ViT). Firstly, input images are divided into 16X16 patches and bundled into a linear projection of flattened patches. The transformation from a single image to multiple image patches captures the visual variety of the input visual patterns. These features are used as input to a Bidirectional-LSTM which is part of the sequence encoder. This captures the past and future image context of all image patches. Then, an attention mechanism is implemented and used to increase the discriminatory capacity of the data fed into the language model, i.e. a Mogrifier-LSTM. The performance of our proposed model is evaluated using the Visual Story-Telling dataset (VIST), and the results show that our model outperforms the current state of the art models.
UnLoc: A Universal Localization Method for Autonomous Vehicles using LiDAR, Radar and/or Camera Input
Ibrahim, Muhammad, Akhtar, Naveed, Anwar, Saeed, Mian, Ajmal
Localization is a fundamental task in robotics for autonomous navigation. Existing localization methods rely on a single input data modality or train several computational models to process different modalities. This leads to stringent computational requirements and sub-optimal results that fail to capitalize on the complementary information in other data streams. This paper proposes UnLoc, a novel unified neural modeling approach for localization with multi-sensor input in all weather conditions. Our multi-stream network can handle LiDAR, Camera and RADAR inputs for localization on demand, i.e., it can work with one or more input sensors, making it robust to sensor failure. UnLoc uses 3D sparse convolutions and cylindrical partitioning of the space to process LiDAR frames and implements ResNet blocks with a slot attention-based feature filtering module for the Radar and image modalities. We introduce a unique learnable modality encoding scheme to distinguish between the input sensor data. Our method is extensively evaluated on Oxford Radar RobotCar, ApolloSouthBay and Perth-WA datasets. The results ascertain the efficacy of our technique.