Plotting

 Meng, Yiping


Free-form Grid Structure Form Finding based on Machine Learning and Multi-objective Optimisation

arXiv.org Artificial Intelligence

Free-form structural forms are widely used to design spatial structures for their irregular spatial morphology. Current free-form form-finding methods cannot adequately meet the material properties, structural requirements or construction conditions, which brings the deviation between the initial 3D geometric design model and the constructed free-form structure. Thus, the main focus of this paper is to improve the rationality of free-form morphology considering multiple objectives in line with the characteristics and constraints of material. In this paper, glued laminated timber is selected as a case. Firstly, machine learning is adopted based on the predictive capability. By selecting a free-form timber grid structure and following the principles of NURBS, the free-form structure is simplified into free-form curves. The transformer is selected to train and predict the curvatures of the curves considering the material characteristics. After predicting the curvatures, the curves are transformed into vectors consisting of control points, weights, and knot vectors. To ensure the constructability and robustness of the structure, minimising the mass of the structure, stress and strain energy are the optimisation objectives. Two parameters (weight and the z-coordinate of the control points) of the free-from morphology are extracted as the variables of the free-form morphology to conduct the optimisation. The evaluation algorithm was selected as the optimal tool due to its capability to optimise multiple parameters. While optimising the two variables, the mechanical performance evaluation indexes such as the maximum displacement in the z-direction are demonstrated in the 60th step. The optimisation results for structure mass, stress and strain energy after 60 steps show the tendency of oscillation convergence, which indicates the efficiency of the proposal multi-objective optimisation.


Environment Reconstruction with Hidden Confounders for Reinforcement Learning based Recommendation

arXiv.org Artificial Intelligence

Reinforcement learning aims at searching the best policy model for decision making, and has been shown powerful for sequential recommendations. The training of the policy by reinforcement learning, however, is placed in an environment. In many real-world applications, however, the policy training in the real environment can cause an unbearable cost, due to the exploration in the environment. Environment reconstruction from the past data is thus an appealing way to release the power of reinforcement learning in these applications. The reconstruction of the environment is, basically, to extract the casual effect model from the data. However, real-world applications are often too complex to offer fully observable environment information. Therefore, quite possibly there are unobserved confounding variables lying behind the data. The hidden confounder can obstruct an effective reconstruction of the environment. In this paper, by treating the hidden confounder as a hidden policy, we propose a deconfounded multi-agent environment reconstruction (DEMER) approach in order to learn the environment together with the hidden confounder. DEMER adopts a multi-agent generative adversarial imitation learning framework. It proposes to introduce the confounder embedded policy, and use the compatible discriminator for training the policies. We then apply DEMER in an application of driver program recommendation. We firstly use an artificial driver program recommendation environment, abstracted from the real application, to verify and analyze the effectiveness of DEMER. We then test DEMER in the real application of Didi Chuxing. Experiment results show that DEMER can effectively reconstruct the hidden confounder, and thus can build the environment better. DEMER also derives a recommendation policy with a significantly improved performance in the test phase of the real application.