Plotting

 Meng, Xiangming


Improving Decoupled Posterior Sampling for Inverse Problems using Data Consistency Constraint

arXiv.org Machine Learning

Diffusion models have shown strong performances in solving inverse problems through posterior sampling while they suffer from errors during earlier steps. To mitigate this issue, several Decoupled Posterior Sampling methods have been recently proposed. However, the reverse process in these methods ignores measurement information, leading to errors that impede effective optimization in subsequent steps. To solve this problem, we propose Guided Decoupled Posterior Sampling (GDPS) by integrating a data consistency constraint in the reverse process. The constraint performs a smoother transition within the optimization process, facilitating a more effective convergence toward the target distribution. Furthermore, we extend our method to latent diffusion models and Tweedie's formula, demonstrating its scalability. We evaluate GDPS on the FFHQ and ImageNet datasets across various linear and nonlinear tasks under both standard and challenging conditions. Experimental results demonstrate that GDPS achieves state-of-the-art performance, improving accuracy over existing methods.


QCM-SGM+: Improved Quantized Compressed Sensing With Score-Based Generative Models

arXiv.org Artificial Intelligence

In practical compressed sensing (CS), the obtained measurements typically necessitate quantization to a limited number of bits prior to transmission or storage. This nonlinear quantization process poses significant recovery challenges, particularly with extreme coarse quantization such as 1-bit. Recently, an efficient algorithm called QCS-SGM was proposed for quantized CS (QCS) which utilizes score-based generative models (SGM) as an implicit prior. Due to the adeptness of SGM in capturing the intricate structures of natural signals, QCS-SGM substantially outperforms previous QCS methods. However, QCS-SGM is constrained to (approximately) row-orthogonal sensing matrices as the computation of the likelihood score becomes intractable otherwise. To address this limitation, we introduce an advanced variant of QCS-SGM, termed QCS-SGM+, capable of handling general matrices effectively. The key idea is a Bayesian inference perspective on the likelihood score computation, wherein expectation propagation is employed for its approximate computation. Extensive experiments are conducted, demonstrating the substantial superiority of QCS-SGM+ over QCS-SGM for general sensing matrices beyond mere row-orthogonality.


Diffusion Model Based Posterior Sampling for Noisy Linear Inverse Problems

arXiv.org Artificial Intelligence

We consider the ubiquitous linear inverse problems with additive Gaussian noise and propose an unsupervised sampling approach called diffusion model based posterior sampling (DMPS) to reconstruct the unknown signal from noisy linear measurements. Specifically, using one diffusion model (DM) as an implicit prior, the fundamental difficulty in performing posterior sampling is that the noise-perturbed likelihood score, i.e., gradient of an annealed likelihood function, is intractable. To circumvent this problem, we introduce a simple yet effective closed-form approximation of it using an uninformative prior assumption. Extensive experiments are conducted on a variety of noisy linear inverse problems such as noisy super-resolution, denoising, deblurring, and colorization. In all tasks, the proposed DMPS demonstrates highly competitive or even better performances on various tasks while being 3 times faster than the state-of-the-art competitor diffusion posterior sampling (DPS). The code to reproduce the results is available at https://github.com/mengxiangming/dmps.


Average case analysis of Lasso under ultra-sparse conditions

arXiv.org Machine Learning

We analyze the performance of the least absolute shrinkage and selection operator (Lasso) for the linear model when the number of regressors $N$ grows larger keeping the true support size $d$ finite, i.e., the ultra-sparse case. The result is based on a novel treatment of the non-rigorous replica method in statistical physics, which has been applied only to problem settings where $N$ ,$d$ and the number of observations $M$ tend to infinity at the same rate. Our analysis makes it possible to assess the average performance of Lasso with Gaussian sensing matrices without assumptions on the scaling of $N$ and $M$, the noise distribution, and the profile of the true signal. Under mild conditions on the noise distribution, the analysis also offers a lower bound on the sample complexity necessary for partial and perfect support recovery when $M$ diverges as $M = O(\log N)$. The obtained bound for perfect support recovery is a generalization of that given in previous literature, which only considers the case of Gaussian noise and diverging $d$. Extensive numerical experiments strongly support our analysis.


Quantized Compressed Sensing with Score-based Generative Models

arXiv.org Artificial Intelligence

We consider the general problem of recovering a high-dimensional signal from noisy quantized measurements. Quantization, especially coarse quantization such as 1-bit sign measurements, leads to severe information loss and thus a good prior knowledge of the unknown signal is helpful for accurate recovery. Motivated by the power of score-based generative models (SGM, also known as diffusion models) in capturing the rich structure of natural signals beyond simple sparsity, we propose an unsupervised data-driven approach called quantized compressed sensing with SGM (QCS-SGM), where the prior distribution is modeled by a pre-trained SGM. To perform posterior sampling, an annealed pseudo-likelihood score called noise perturbed pseudo-likelihood score is introduced and combined with the prior score of SGM. The proposed QCS-SGM applies to an arbitrary number of quantization bits. Experiments on a variety of baseline datasets demonstrate that the proposed QCS-SGM significantly outperforms existing state-of-the-art algorithms by a large margin for both in-distribution and out-of-distribution samples. Moreover, as a posterior sampling method, QCS-SGM can be easily used to obtain confidence intervals or uncertainty estimates of the reconstructed results. The code is available at https://github.com/mengxiangming/QCS-SGM.


Exact Solutions of a Deep Linear Network

arXiv.org Machine Learning

This work finds the exact solutions to a deep linear network with weight decay and stochastic neurons, a fundamental model for understanding the landscape of neural networks. Our result implies that weight decay strongly interacts with the model architecture and can create bad minima in a network with more than $1$ hidden layer, qualitatively different for a network with only $1$ hidden layer. As an application, we also analyze stochastic nets and show that their prediction variance vanishes to zero as the stochasticity, the width, or the depth tends to infinity.


Stochastic Neural Networks with Infinite Width are Deterministic

arXiv.org Machine Learning

Applications of neural networks have achieved great success in various fields. A major extension of the standard neural networks is to make them stochastic, namely, to make the output a random function of the input. In a broad sense, stochastic neural networks include neural networks trained with dropout (Srivastava et al., 2014; Gal & Ghahramani, 2016), Bayesian networks (Mackay, 1992), variational autoencoders (VAE) (Kingma & Welling, 2013), and generative adversarial networks (Goodfellow et al., 2014). There are many reasons why one wants to make a neural network stochastic. Two main reasons are (1) regularization and (2) distribution modeling.


On Model Selection Consistency of Lasso for High-Dimensional Ising Models on Tree-like Graphs

arXiv.org Machine Learning

We consider the problem of high-dimensional Ising model selection using neighborhood-based least absolute shrinkage and selection operator (Lasso). It is rigorously proved that under some mild coherence conditions on the population covariance matrix of the Ising model, consistent model selection can be achieved with sample sizes $n=\Omega{(d^3\log{p})}$ for any tree-like graph in the paramagnetic phase, where $p$ is the number of variables and $d$ is the maximum node degree. When the same conditions are imposed directly on the sample covariance matrices, it is shown that a reduced sample size $n=\Omega{(d^2\log{p})}$ suffices. The obtained sufficient conditions for consistent model selection with Lasso are the same in the scaling of the sample complexity as that of $\ell_1$-regularized logistic regression. Given the popularity and efficiency of Lasso, our rigorous analysis provides a theoretical backing for its practical use in Ising model selection.


Ising Model Selection Using $\ell_{1}$-Regularized Linear Regression

arXiv.org Artificial Intelligence

We theoretically investigate the performance of $\ell_{1}$-regularized linear regression ($\ell_1$-LinR) for the problem of Ising model selection using the replica method from statistical mechanics. The regular random graph is considered under paramagnetic assumption. Our results show that despite model misspecification, the $\ell_1$-LinR estimator can successfully recover the graph structure of the Ising model with $N$ variables using $M=\mathcal{O}\left(\log N\right)$ samples, which is of the same order as that of $\ell_{1}$-regularized logistic regression. Moreover, we provide a computationally efficient method to accurately predict the non-asymptotic performance of the $\ell_1$-LinR estimator with moderate $M$ and $N$. Simulations show an excellent agreement between theoretical predictions and experimental results, which supports our findings.


Structure Learning in Inverse Ising Problems Using $\ell_2$-Regularized Linear Estimator

arXiv.org Machine Learning

The inference performance of the pseudolikelihood method is discussed in the framework of the inverse Ising problem when the $\ell_2$-regularized (ridge) linear regression is adopted. This setup is introduced for theoretically investigating the situation where the data generation model is different from the inference one, namely the model mismatch situation. In the teacher-student scenario under the assumption that the teacher couplings are sparse, the analysis is conducted using the replica and cavity methods, with a special focus on whether the presence/absence of teacher couplings is correctly inferred or not. The result indicates that despite the model mismatch, one can perfectly identify the network structure using naive linear regression without regularization when the number of spins $N$ is smaller than the dataset size $M$, in the thermodynamic limit $N\to \infty$. Further, to access the underdetermined region $M < N$, we examine the effect of the $\ell_2$ regularization, and find that biases appear in all the coupling estimates, preventing the perfect identification of the network structure. We, however, find that the biases are shown to decay exponentially fast as the distance from the center spin chosen in the pseudolikelihood method grows. Based on this finding, we propose a two-stage estimator: In the first stage, the ridge regression is used and the estimates are pruned by a relatively small threshold; in the second stage the naive linear regression is conducted only on the remaining couplings, and the resultant estimates are again pruned by another relatively large threshold. This estimator with the appropriate regularization coefficient and thresholds is shown to achieve the perfect identification of the network structure even in $0