Goto

Collaborating Authors

 Meng, Lingwei


Unified Modeling of Multi-Talker Overlapped Speech Recognition and Diarization with a Sidecar Separator

arXiv.org Artificial Intelligence

Multi-talker overlapped speech poses a significant challenge for speech recognition and diarization. Recent research indicated that these two tasks are inter-dependent and complementary, motivating us to explore a unified modeling method to address them in the context of overlapped speech. A recent study proposed a cost-effective method to convert a single-talker automatic speech recognition (ASR) system into a multi-talker one, by inserting a Sidecar separator into the frozen well-trained ASR model. Extending on this, we incorporate a diarization branch into the Sidecar, allowing for unified modeling of both ASR and diarization with a negligible overhead of only 768 parameters. The proposed method yields better ASR results compared to the baseline on LibriMix and LibriSpeechMix datasets. Moreover, without sophisticated customization on the diarization task, our method achieves acceptable diarization results on the two-speaker subset of CALLHOME with only a few adaptation steps.


A Sidecar Separator Can Convert a Single-Talker Speech Recognition System to a Multi-Talker One

arXiv.org Artificial Intelligence

Although automatic speech recognition (ASR) can perform well in common non-overlapping environments, sustaining performance in multi-talker overlapping speech recognition remains challenging. Recent research revealed that ASR model's encoder captures different levels of information with different layers -- the lower layers tend to have more acoustic information, and the upper layers more linguistic. This inspires us to develop a Sidecar separator to empower a well-trained ASR model for multi-talker scenarios by separating the mixed speech embedding between two suitable layers. We experimented with a wav2vec 2.0-based ASR model with a Sidecar mounted. By freezing the parameters of the original model and training only the Sidecar (8.7 M, 8.4% of all parameters), the proposed approach outperforms the previous state-of-the-art by a large margin for the 2-speaker mixed LibriMix dataset, reaching a word error rate (WER) of 10.36%; and obtains comparable results (7.56%) for LibriSpeechMix dataset when limited training.