Meng, Helen
SimCalib: Graph Neural Network Calibration based on Similarity between Nodes
Tang, Boshi, Wu, Zhiyong, Wu, Xixin, Huang, Qiaochu, Chen, Jun, Lei, Shun, Meng, Helen
Graph neural networks (GNNs) have exhibited impressive performance in modeling graph data as exemplified in various applications. Recently, the GNN calibration problem has attracted increasing attention, especially in cost-sensitive scenarios. Previous work has gained empirical insights on the issue, and devised effective approaches for it, but theoretical supports still fall short. In this work, we shed light on the relationship between GNN calibration and nodewise similarity via theoretical analysis. A novel calibration framework, named SimCalib, is accordingly proposed to consider similarity between nodes at global and local levels. At the global level, the Mahalanobis distance between the current node and class prototypes is integrated to implicitly consider similarity between the current node and all nodes in the same class. At the local level, the similarity of node representation movement dynamics, quantified by nodewise homophily and relative degree, is considered. Informed about the application of nodewise movement patterns in analyzing nodewise behavior on the over-smoothing problem, we empirically present a possible relationship between over-smoothing and GNN calibration problem. Experimentally, we discover a correlation between nodewise similarity and model calibration improvement, in alignment with our theoretical results. Additionally, we conduct extensive experiments investigating different design factors and demonstrate the effectiveness of our proposed SimCalib framework for GNN calibration by achieving state-of-the-art performance on 14 out of 16 benchmarks.
DASA: Difficulty-Aware Semantic Augmentation for Speaker Verification
Wang, Yuanyuan, Zhang, Yang, Wu, Zhiyong, Yang, Zhihan, Wei, Tao, Zou, Kun, Meng, Helen
Data augmentation is vital to the generalization ability and robustness of deep neural networks (DNNs) models. Existing augmentation methods for speaker verification manipulate the raw signal, which are time-consuming and the augmented samples lack diversity. In this paper, we present a novel difficulty-aware semantic augmentation (DASA) approach for speaker verification, which can generate diversified training samples in speaker embedding space with negligible extra computing cost. Firstly, we augment training samples by perturbing speaker embeddings along semantic directions, which are obtained from speaker-wise covariance matrices. Secondly, accurate covariance matrices are estimated from robust speaker embeddings during training, so we introduce difficultyaware additive margin softmax (DAAM-Softmax) to obtain optimal speaker embeddings. Finally, we assume the number of augmented samples goes to infinity and derive a closed-form upper bound of the expected loss with DASA, which achieves compatibility and efficiency. Extensive experiments demonstrate the proposed approach can achieve a remarkable performance improvement. The best result achieves a 14.6% relative reduction in EER metric on CN-Celeb evaluation set.
SememeASR: Boosting Performance of End-to-End Speech Recognition against Domain and Long-Tailed Data Shift with Sememe Semantic Knowledge
Zhu, Jiaxu, Song, Changhe, Wu, Zhiyong, Meng, Helen
Recently, excellent progress has been made in speech recognition. However, pure data-driven approaches have struggled to solve the problem in domain-mismatch and long-tailed data. Considering that knowledge-driven approaches can help data-driven approaches alleviate their flaws, we introduce sememe-based semantic knowledge information to speech recognition (SememeASR). Sememe, according to the linguistic definition, is the minimum semantic unit in a language and is able to represent the implicit semantic information behind each word very well. Our experiments show that the introduction of sememe information can improve the effectiveness of speech recognition. In addition, our further experiments show that sememe knowledge can improve the model's recognition of long-tailed data and enhance the model's domain generalization ability.
Text-Only Domain Adaptation for End-to-End Speech Recognition through Down-Sampling Acoustic Representation
Zhu, Jiaxu, Tong, Weinan, Xu, Yaoxun, Song, Changhe, Wu, Zhiyong, You, Zhao, Su, Dan, Yu, Dong, Meng, Helen
Mapping two modalities, speech and text, into a shared representation space, is a research topic of using text-only data to improve end-to-end automatic speech recognition (ASR) performance in new domains. However, the length of speech representation and text representation is inconsistent. Although the previous method up-samples the text representation to align with acoustic modality, it may not match the expected actual duration. In this paper, we proposed novel representations match strategy through down-sampling acoustic representation to align with text modality. By introducing a continuous integrate-and-fire (CIF) module generating acoustic representations consistent with token length, our ASR model can learn unified representations from both modalities better, allowing for domain adaptation using text-only data of the target domain. Experiment results of new domain data demonstrate the effectiveness of the proposed method.
Natural Language Embedded Programs for Hybrid Language Symbolic Reasoning
Zhang, Tianhua, Ge, Jiaxin, Luo, Hongyin, Chuang, Yung-Sung, Gao, Mingye, Gong, Yuan, Wu, Xixin, Kim, Yoon, Meng, Helen, Glass, James
How can we perform computations over natural language representations to solve tasks that require symbolic and numeric reasoning? We propose natural language embedded programs (NLEP) as a unifying framework for addressing math/symbolic reasoning, natural language understanding, and instruction following tasks. Our approach prompts a language model to generate full Python programs that define functions over data structures which contain natural language representations of structured knowledge. A Python interpreter then executes the generated code and prints the output. Despite using a task-general prompt, we find that this approach can improve upon strong baselines across a range of different tasks including math and symbolic reasoning, text classification, question answering, and instruction following. We further find the generated programs are often interpretable and enable post-hoc verification of the intermediate reasoning steps.
Enhancing the vocal range of single-speaker singing voice synthesis with melody-unsupervised pre-training
Zhou, Shaohuan, Li, Xu, Wu, Zhiyong, Shan, Ying, Meng, Helen
The single-speaker singing voice synthesis (SVS) usually underperforms at pitch values that are out of the singer's vocal range or associated with limited training samples. Based on our previous work, this work proposes a melody-unsupervised multi-speaker pre-training method conducted on a multi-singer dataset to enhance the vocal range of the single-speaker, while not degrading the timbre similarity. This pre-training method can be deployed to a large-scale multi-singer dataset, which only contains audio-and-lyrics pairs without phonemic timing information and pitch annotation. Specifically, in the pre-training step, we design a phoneme predictor to produce the frame-level phoneme probability vectors as the phonemic timing information and a speaker encoder to model the timbre variations of different singers, and directly estimate the frame-level f0 values from the audio to provide the pitch information. These pre-trained model parameters are delivered into the fine-tuning step as prior knowledge to enhance the single speaker's vocal range. Moreover, this work also contributes to improving the sound quality and rhythm naturalness of the synthesized singing voices. It is the first to introduce a differentiable duration regulator to improve the rhythm naturalness of the synthesized voice, and a bi-directional flow model to improve the sound quality. Experimental results verify that the proposed SVS system outperforms the baseline on both sound quality and naturalness.
Improving Mandarin Prosodic Structure Prediction with Multi-level Contextual Information
Chen, Jie, Song, Changhe, Tuo, Deyi, Wu, Xixin, Kang, Shiyin, Wu, Zhiyong, Meng, Helen
For text-to-speech (TTS) synthesis, prosodic structure prediction (PSP) plays an important role in producing natural and intelligible speech. Although inter-utterance linguistic information can influence the speech interpretation of the target utterance, previous works on PSP mainly focus on utilizing intrautterance linguistic information of the current utterance only. This work proposes to use inter-utterance linguistic information to improve the performance of PSP. Multi-level contextual information, which includes both inter-utterance and intrautterance linguistic information, is extracted by a hierarchical encoder from character level, utterance level and discourse level of the input text. Then a multi-task learning (MTL) decoder predicts prosodic boundaries from multi-level contextual information. Objective evaluation results on two datasets show that our method achieves better F1 scores in predicting prosodic word (PW), prosodic phrase (PPH) and intonational phrase (IPH). It demonstrates the effectiveness of using multi-level contextual information for PSP. Subjective preference tests also indicate the naturalness of synthesized speeches are improved.
Towards Spontaneous Style Modeling with Semi-supervised Pre-training for Conversational Text-to-Speech Synthesis
Li, Weiqin, Lei, Shun, Huang, Qiaochu, Zhou, Yixuan, Wu, Zhiyong, Kang, Shiyin, Meng, Helen
The spontaneous behavior that often occurs in conversations makes speech more human-like compared to reading-style. However, synthesizing spontaneous-style speech is challenging due to the lack of high-quality spontaneous datasets and the high cost of labeling spontaneous behavior. In this paper, we propose a semi-supervised pre-training method to increase the amount of spontaneous-style speech and spontaneous behavioral labels. In the process of semi-supervised learning, both text and speech information are considered for detecting spontaneous behaviors labels in speech. Moreover, a linguistic-aware encoder is used to model the relationship between each sentence in the conversation. Experimental results indicate that our proposed method achieves superior expressive speech synthesis performance with the ability to model spontaneous behavior in spontaneous-style speech and predict reasonable spontaneous behavior from text.
QS-TTS: Towards Semi-Supervised Text-to-Speech Synthesis via Vector-Quantized Self-Supervised Speech Representation Learning
Guo, Haohan, Xie, Fenglong, Kang, Jiawen, Xiao, Yujia, Wu, Xixin, Meng, Helen
This paper proposes a novel semi-supervised TTS framework, QS-TTS, to improve TTS quality with lower supervised data requirements via Vector-Quantized Self-Supervised Speech Representation Learning (VQ-S3RL) utilizing more unlabeled speech audio. This framework comprises two VQ-S3R learners: first, the principal learner aims to provide a generative Multi-Stage Multi-Codebook (MSMC) VQ-S3R via the MSMC-VQ-GAN combined with the contrastive S3RL, while decoding it back to the high-quality audio; then, the associate learner further abstracts the MSMC representation into a highly-compact VQ representation through a VQ-VAE. These two generative VQ-S3R learners provide profitable speech representations and pre-trained models for TTS, significantly improving synthesis quality with the lower requirement for supervised data. QS-TTS is evaluated comprehensively under various scenarios via subjective and objective tests in experiments. The results powerfully demonstrate the superior performance of QS-TTS, winning the highest MOS over supervised or semi-supervised baseline TTS approaches, especially in low-resource scenarios. Moreover, comparing various speech representations and transfer learning methods in TTS further validates the notable improvement of the proposed VQ-S3RL to TTS, showing the best audio quality and intelligibility metrics. The trend of slower decay in the synthesis quality of QS-TTS with decreasing supervised data further highlights its lower requirements for supervised data, indicating its great potential in low-resource scenarios.
Towards Improving the Expressiveness of Singing Voice Synthesis with BERT Derived Semantic Information
Zhou, Shaohuan, Lei, Shun, You, Weiya, Tuo, Deyi, You, Yuren, Wu, Zhiyong, Kang, Shiyin, Meng, Helen
This paper presents an end-to-end high-quality singing voice synthesis (SVS) system that uses bidirectional encoder representation from Transformers (BERT) derived semantic embeddings to improve the expressiveness of the synthesized singing voice. Based on the main architecture of recently proposed VISinger, we put forward several specific designs for expressive singing voice synthesis. First, different from the previous SVS models, we use text representation of lyrics extracted from pre-trained BERT as additional input to the model. The representation contains information about semantics of the lyrics, which could help SVS system produce more expressive and natural voice. Second, we further introduce an energy predictor to stabilize the synthesized voice and model the wider range of energy variations that also contribute to the expressiveness of singing voice. Last but not the least, to attenuate the off-key issues, the pitch predictor is re-designed to predict the real to note pitch ratio. Both objective and subjective experimental results indicate that the proposed SVS system can produce singing voice with higher-quality outperforming VISinger.