Goto

Collaborating Authors

 Memmesheimer, Raphael


Skeleton-DML: Deep Metric Learning for Skeleton-Based One-Shot Action Recognition

arXiv.org Artificial Intelligence

One-shot action recognition allows the recognition of human-performed actions with only a single training example. This can influence human-robot-interaction positively by enabling the robot to react to previously unseen behaviour. We formulate the one-shot action recognition problem as a deep metric learning problem and propose a novel image-based skeleton representation that performs well in a metric learning setting. Therefore, we train a model that projects the image representations into an embedding space. In embedding space the similar actions have a low euclidean distance while dissimilar actions have a higher distance. The one-shot action recognition problem becomes a nearest-neighbor search in a set of activity reference samples. We evaluate the performance of our proposed representation against a variety of other skeleton-based image representations. In addition, we present an ablation study that shows the influence of different embedding vector sizes, losses and augmentation. Our approach lifts the state-of-the-art by 3.3% for the one-shot action recognition protocol on the NTU RGB+D 120 dataset under a comparable training setup. With additional augmentation our result improved over 7.7%.


Simitate: A Hybrid Imitation Learning Benchmark

arXiv.org Machine Learning

We present Simitate --- a hybrid benchmarking suite targeting the evaluation of approaches for imitation learning. A dataset containing 1938 sequences where humans perform daily activities in a realistic environment is presented. The dataset is strongly coupled with an integration into a simulator. RGB and depth streams with a resolution of 960$\mathbb{\times}$540 at 30Hz and accurate ground truth poses for the demonstrator's hand, as well as the object in 6 DOF at 120Hz are provided. Along with our dataset we provide the 3D model of the used environment, labeled object images and pre-trained models. A benchmarking suite that aims at fostering comparability and reproducibility supports the development of imitation learning approaches. Further, we propose and integrate evaluation metrics on assessing the quality of effect and trajectory of the imitation performed in simulation. Simitate is available on our project website: \url{https://agas.uni-koblenz.de/data/simitate/}.