Meek, Christopher
MAS: a multiplicative approximation scheme for probabilistic inference
Wexler, Ydo, Meek, Christopher
We propose a multiplicative approximation scheme (MAS) for inference problems in graphical models, which can be applied to various inference algorithms. The method uses $\epsilon$-decompositions which decompose functions used throughout the inference procedure into functions over smaller sets of variables with a known error $\epsilon$. MAS translates these local approximations into bounds on the accuracy of the results. We show how to optimize $\epsilon$-decompositions and provide a fast closed-form solution for an $L_2$ approximation. Applying MAS to the Variable Elimination inference algorithm, we introduce an algorithm we call DynaDecomp which is extremely fast in practice and provides guaranteed error bounds on the result. The superior accuracy and efficiency of DynaDecomp is demonstrated.
Using ``epitomes'' to model genetic diversity: Rational design of HIV vaccine cocktails
Jojic, Nebojsa, Jojic, Vladimir, Meek, Christopher, Heckerman, David, Frey, Brendan J.
We introduce a new model of genetic diversity which summarizes a large input dataset into an epitome, a short sequence or a small set of short sequences of probability distributions capturing many overlapping subsequences from the dataset. The epitome as a representation has already been used in modeling real-valued signals, such as images and audio. The discrete sequence model we introduce in this paper targets applications in genetics, from multiple alignment to recombination and mutation inference. In our experiments, we concentrate on modeling the diversity of HIV where the epitome emerges as a natural model for producing relatively small vaccines covering a large number of immune system targets known as epitopes. Our experiments show that the epitome includes more epitopes than other vaccine designs of similar length, including cocktails of consensus strains, phylogenetic tree centers, and observed strains. We also discuss epitome designs that take into account uncertainty about T-cell cross reactivity and epitope presentation. In our experiments, we find that vaccine optimization is fairly robust to these uncertainties.
Using ``epitomes'' to model genetic diversity: Rational design of HIV vaccine cocktails
Jojic, Nebojsa, Jojic, Vladimir, Meek, Christopher, Heckerman, David, Frey, Brendan J.
We introduce a new model of genetic diversity which summarizes a large input dataset into an epitome, a short sequence or a small set of short sequences of probability distributions capturing many overlapping subsequences fromthe dataset. The epitome as a representation has already been used in modeling real-valued signals, such as images and audio. The discrete sequence model we introduce in this paper targets applications in genetics, from multiple alignment to recombination and mutation inference. Inour experiments, we concentrate on modeling the diversity of HIV where the epitome emerges as a natural model for producing relatively smallvaccines covering a large number of immune system targets known as epitopes. Our experiments show that the epitome includes more epitopes than other vaccine designs of similar length, including cocktails of consensus strains, phylogenetic tree centers, and observed strains. We also discuss epitome designs that take into account uncertainty about T-cell cross reactivity and epitope presentation. In our experiments, we find that vaccine optimization is fairly robust to these uncertainties.