Meeds, Edward
POPE: Post Optimization Posterior Evaluation of Likelihood Free Models
Meeds, Edward, Chiang, Michael, Lee, Mary, Cinquin, Olivier, Lowengrub, John, Welling, Max
In many domains, scientists build complex simulators of natural phenomena that encode their hypotheses about the underlying processes. These simulators can be deterministic or stochastic, fast or slow, constrained or unconstrained, and so on. Optimizing the simulators with respect to a set of parameter values is common practice, resulting in a single parameter setting that minimizes an objective subject to constraints. We propose a post optimization posterior analysis that computes and visualizes all the models that can generate equally good or better simulation results, subject to constraints. These optimization posteriors are desirable for a number of reasons among which easy interpretability, automatic parameter sensitivity and correlation analysis and posterior predictive analysis. We develop a new sampling framework based on approximate Bayesian computation (ABC) with one-sided kernels. In collaboration with two groups of scientists we applied POPE to two important biological simulators: a fast and stochastic simulator of stem-cell cycling and a slow and deterministic simulator of tumor growth patterns.
GPS-ABC: Gaussian Process Surrogate Approximate Bayesian Computation
Meeds, Edward, Welling, Max
Scientists often express their understanding of the world through a computationally demanding simulation program. Analyzing the posterior distribution of the parameters given observations (the inverse problem) can be extremely challenging. The Approximate Bayesian Computation (ABC) framework is the standard statistical tool to handle these likelihood free problems, but they require a very large number of simulations. In this work we develop two new ABC sampling algorithms that significantly reduce the number of simulations necessary for posterior inference. Both algorithms use confidence estimates for the accept probability in the Metropolis Hastings step to adaptively choose the number of necessary simulations. Our GPS-ABC algorithm stores the information obtained from every simulation in a Gaussian process which acts as a surrogate function for the simulated statistics. Experiments on a challenging realistic biological problem illustrate the potential of these algorithms.
Modeling Dyadic Data with Binary Latent Factors
Meeds, Edward, Ghahramani, Zoubin, Neal, Radford M., Roweis, Sam T.
We introduce binary matrix factorization, a novel model for unsupervised matrix decomposition.The decomposition is learned by fitting a nonparametric Bayesian probabilistic model with binary latent variables to a matrix of dyadic data. Unlike bi-clustering models, which assign each row or column to a single cluster based on a categorical hidden feature, our binary feature model reflects the prior belief that items and attributes can be associated with more than one latent cluster at a time. We provide simple learning and inference rules for this new model and show how to extend it to an infinite model in which the number of features is not a priori fixed but is allowed to grow with the size of the data.