Plotting

 Mech, Radomir


LPaintB: Learning to Paint from Self-SupervisionLPaintB: Learning to Paint from Self-Supervision

arXiv.org Artificial Intelligence

We present a novel reinforcement learning-based natural media painting algorithm. Our goal is to reproduce a reference image using brush strokes and we encode the objective through observations. Our formulation takes into account that the distribution of the reward in the action space is sparse and training a reinforcement learning algorithm from scratch can be difficult. We present an approach that combines self-supervised learning and reinforcement learning to effectively transfer negative samples into positive ones and change the reward distribution. We demonstrate the benefits of our painting agent to reproduce reference images with brush strokes. The training phase takes about one hour and the runtime algorithm takes about 30 seconds on a GTX1080 GPU reproducing a 1000 800 image with 20,000 strokes.


Sequence-to-Segment Networks for Segment Detection

Neural Information Processing Systems

Detecting segments of interest from an input sequence is a challenging problem which often requires not only good knowledge of individual target segments, but also contextual understanding of the entire input sequence and the relationships between the target segments. To address this problem, we propose the Sequence-to-Segment Network (S$^2$N), a novel end-to-end sequential encoder-decoder architecture. S$^2$N first encodes the input into a sequence of hidden states that progressively capture both local and holistic information. It then employs a novel decoding architecture, called Segment Detection Unit (SDU), that integrates the decoder state and encoder hidden states to detect segments sequentially. During training, we formulate the assignment of predicted segments to ground truth as bipartite matching and use the Earth Mover's Distance to calculate the localization errors. We experiment with S$^2$N on temporal action proposal generation and video summarization and show that S$^2$N achieves state-of-the-art performance on both tasks.


Sequence-to-Segment Networks for Segment Detection

Neural Information Processing Systems

Detecting segments of interest from an input sequence is a challenging problem which often requires not only good knowledge of individual target segments, but also contextual understanding of the entire input sequence and the relationships between the target segments. To address this problem, we propose the Sequence-to-Segment Network (S$^2$N), a novel end-to-end sequential encoder-decoder architecture. S$^2$N first encodes the input into a sequence of hidden states that progressively capture both local and holistic information. It then employs a novel decoding architecture, called Segment Detection Unit (SDU), that integrates the decoder state and encoder hidden states to detect segments sequentially. During training, we formulate the assignment of predicted segments to ground truth as bipartite matching and use the Earth Mover's Distance to calculate the localization errors. We experiment with S$^2$N on temporal action proposal generation and video summarization and show that S$^2$N achieves state-of-the-art performance on both tasks.