Goto

Collaborating Authors

 McCallum, Andrew


FACTORIE: Probabilistic Programming via Imperatively Defined Factor Graphs

Neural Information Processing Systems

Discriminatively trained undirected graphical models have had wide empirical success, and there has been increasing interest in toolkits that ease their application to complex relational data. The power in relational models is in their repeated structure and tied parameters; at issue is how to define these structures in a powerful and flexible way. Rather than using a declarative language, such as SQL or first-order logic, we advocate using an imperative language to express various aspects of model structure, inference, and learning. By combining the traditional, declarative, statistical semantics of factor graphs with imperative definitions of their construction and operation, we allow the user to mix declarative and procedural domain knowledge, and also gain significant efficiencies. We have implemented such imperatively defined factor graphs in a system we call Factorie, a software library for an object-oriented, strongly-typed, functional language. In experimental comparisons to Markov Logic Networks on joint segmentation and coreference, we find our approach to be 3-15 times faster while reducing error by 20-25%-achieving a new state of the art.


Rethinking LDA: Why Priors Matter

Neural Information Processing Systems

Implementations of topic models typically use symmetric Dirichlet priors with fixed concentration parameters, with the implicit assumption that such smoothing parameters" have little practical effect. In this paper, we explore several classes of structured priors for topic models. We find that an asymmetric Dirichlet prior over the document-topic distributions has substantial advantages over a symmetric prior, while an asymmetric prior over the topic-word distributions provides no real benefit. Approximation of this prior structure through simple, efficient hyperparameter optimization steps is sufficient to achieve these performance gains. The prior structure we advocate substantially increases the robustness of topic models to variations in the number of topics and to the highly skewed word frequency distributions common in natural language. Since this prior structure can be implemented using efficient algorithms that add negligible cost beyond standard inference techniques, we recommend it as a new standard for topic modeling."


Group and Topic Discovery from Relations and Their Attributes

Neural Information Processing Systems

We present a probabilistic generative model of entity relationships and their attributes that simultaneously discovers groups among the entities and topics among the corresponding textual attributes. Block-models of relationship data have been studied in social network analysis for some time. Here we simultaneously cluster in several modalities at once, incorporating the attributes (here, words) associated with certain relationships. Significantly, joint inference allows the discovery of topics to be guided by the emerging groups, and vice-versa. We present experimental results on two large data sets: sixteen years of bills put before the U.S. Senate, comprising their corresponding text and voting records, and thirteen years of similar data from the United Nations. We show that in comparison with traditional, separate latent-variable models for words, or Blockstructures for votes, the Group-Topic model's joint inference discovers more cohesive groups and improved topics.


Group and Topic Discovery from Relations and Their Attributes

Neural Information Processing Systems

We present a probabilistic generative model of entity relationships and their attributes that simultaneously discovers groups among the entities and topics among the corresponding textual attributes. Block-models of relationship data have been studied in social network analysis for some time. Here we simultaneously cluster in several modalities at once, incorporating the attributes (here, words) associated with certain relationships. Significantly, joint inference allows the discovery of topics to be guided by the emerging groups, and vice-versa. We present experimental results on two large data sets: sixteen years of bills put before the U.S. Senate, comprising their corresponding text and voting records, and thirteen years of similar data from the United Nations. We show that in comparison with traditional, separate latent-variable models for words, or Block-structures for votes, the Group-Topic model's joint inference discovers more cohesive groups and improved topics.


Conditional Models of Identity Uncertainty with Application to Noun Coreference

Neural Information Processing Systems

Coreference analysis, also known as record linkage or identity uncertainty, is a difficult and important problem in natural language processing, databases, citation matching and many other tasks. This paper introduces several discriminative, conditional-probability models for coreference analysis, all examples of undirected graphical models. Unlike many historical approaches to coreference, the models presented here are relational--they do not assume that pairwise coreference decisions should be made independently from each other. Unlike other relational models of coreference that are generative, the conditional model here can incorporate a great variety of features of the input without having to be concerned about their dependencies--paralleling the advantages of conditional random fields over hidden Markov models.


Conditional Models of Identity Uncertainty with Application to Noun Coreference

Neural Information Processing Systems

Coreference analysis, also known as record linkage or identity uncertainty, is a difficult and important problem in natural language processing, databases, citation matching and many other tasks. This paper introduces several discriminative, conditional-probability models for coreference analysis, all examples of undirected graphical models. Unlike many historical approaches to coreference, the models presented here are relational--they do not assume that pairwise coreference decisions should be made independently from each other. Unlike other relational models of coreference that are generative, the conditional model here can incorporate a great variety of features of the input without having to be concerned about their dependencies--paralleling the advantages of conditional random fields over hidden Markov models.


Conditional Models of Identity Uncertainty with Application to Noun Coreference

Neural Information Processing Systems

Coreference analysis, also known as record linkage or identity uncertainty, isa difficult and important problem in natural language processing, databases, citation matching and many other tasks. This paper introduces severaldiscriminative, conditional-probability models for coreference analysis,all examples of undirected graphical models.


Classification with Hybrid Generative/Discriminative Models

Neural Information Processing Systems

Although discriminatively trained classifiers are usually more accurate when labeled training data is abundant, previous work has shown that when training data is limited, generative classifiers can outperform them. This paper describes a hybrid model in which a high-dimensional subset of the parameters are trained to maximize generative likelihood, and another, small, subset of parameters are discriminatively trained to maximize conditional likelihood. We give a sample complexity bound showing that in order to fit the discriminative parameters well, the number of training examples required depends only on the logarithm of the number of feature occurrences and feature set size. Experimental results show that hybrid models can provide lower test error and can produce better accuracy/coverage curves than either their purely generative or purely discriminative counterparts. We also discuss several advantages of hybrid models, and advocate further work in this area.