Goto

Collaborating Authors

 McCallum, Andrew


Entity Linking and Discovery via Arborescence-based Supervised Clustering

arXiv.org Artificial Intelligence

Previous work has shown promising results in performing entity linking by measuring not only the affinities between mentions and entities but also those amongst mentions. In this paper, we present novel training and inference procedures that fully utilize mention-to-mention affinities by building minimum arborescences (i.e., directed spanning trees) over mentions and entities across documents in order to make linking decisions. We also show that this method gracefully extends to entity discovery, enabling the clustering of mentions that do not have an associated entity in the knowledge base. We evaluate our approach on the Zero-Shot Entity Linking dataset and MedMentions, the largest publicly available biomedical dataset, and show significant improvements in performance for both entity linking and discovery compared to identically parameterized models. We further show significant efficiency improvements with only a small loss in accuracy over previous work, which use more computationally expensive models.


Word2Box: Learning Word Representation Using Box Embeddings

arXiv.org Artificial Intelligence

Learning vector representations for words is one of the most fundamental topics in NLP, capable of capturing syntactic and semantic relationships useful in a variety of downstream NLP tasks. Vector representations can be limiting, however, in that typical scoring such as dot product similarity intertwines position and magnitude of the vector in space. Exciting innovations in the space of representation learning have proposed alternative fundamental representations, such as distributions, hyperbolic vectors, or regions. Our model, Word2Box, takes a region-based approach to the problem of word representation, representing words as $n$-dimensional rectangles. These representations encode position and breadth independently and provide additional geometric operations such as intersection and containment which allow them to model co-occurrence patterns vectors struggle with. We demonstrate improved performance on various word similarity tasks, particularly on less common words, and perform a qualitative analysis exploring the additional unique expressivity provided by Word2Box.


Case-based Reasoning for Natural Language Queries over Knowledge Bases

arXiv.org Artificial Intelligence

It is often challenging for a system to solve a new complex problem from scratch, but much easier if the system can access other similar problems and description of their solutions -- a paradigm known as case-based reasoning (CBR). We propose a neuro-symbolic CBR approach for question answering over large knowledge bases (CBR-KBQA). While the idea of CBR is tempting, composing a solution from cases is nontrivial, when individual cases only contain partial logic to the full solution. To resolve this, CBR-KBQA consists of two modules: a non-parametric memory that stores cases (question and logical forms) and a parametric model which can generate logical forms by retrieving relevant cases from memory. Through experiments, we show that CBR-KBQA can effectively derive novel combination of relations not presented in case memory that is required to answer compositional questions. On several KBQA datasets that test compositional generalization, CBR-KBQA achieves competitive performance. For example, on the challenging ComplexWebQuestions dataset, CBR-KBQA outperforms the current state of the art by 11% accuracy. Furthermore, we show that CBR-KBQA is capable of using new cases \emph{without} any further training. Just by incorporating few human-labeled examples in the non-parametric case memory, CBR-KBQA is able to successfully generate queries containing unseen KB relations.


Exact and Approximate Hierarchical Clustering Using A*

arXiv.org Machine Learning

Hierarchical clustering is a critical task in numerous domains. Many approaches are based on heuristics and the properties of the resulting clusterings are studied post hoc. However, in several applications, there is a natural cost function that can be used to characterize the quality of the clustering. In those cases, hierarchical clustering can be seen as a combinatorial optimization problem. To that end, we introduce a new approach based on A* search. We overcome the prohibitively large search space by combining A* with a novel \emph{trellis} data structure. This combination results in an exact algorithm that scales beyond previous state of the art, from a search space with $10^{12}$ trees to $10^{15}$ trees, and an approximate algorithm that improves over baselines, even in enormous search spaces that contain more than $10^{1000}$ trees. We empirically demonstrate that our method achieves substantially higher quality results than baselines for a particle physics use case and other clustering benchmarks. We describe how our method provides significantly improved theoretical bounds on the time and space complexity of A* for clustering.


Probabilistic Box Embeddings for Uncertain Knowledge Graph Reasoning

arXiv.org Artificial Intelligence

Knowledge bases often consist of facts which are harvested from a variety of sources, many of which are noisy and some of which conflict, resulting in a level of uncertainty for each triple. Knowledge bases are also often incomplete, prompting the use of embedding methods to generalize from known facts, however, existing embedding methods only model triple-level uncertainty, and reasoning results lack global consistency. To address these shortcomings, we propose BEUrRE, a novel uncertain knowledge graph embedding method with calibrated probabilistic semantics. BEUrRE models each entity as a box (i.e. axis-aligned hyperrectangle) and relations between two entities as affine transforms on the head and tail entity boxes. The geometry of the boxes allows for efficient calculation of intersections and volumes, endowing the model with calibrated probabilistic semantics and facilitating the incorporation of relational constraints. Extensive experiments on two benchmark datasets show that BEUrRE consistently outperforms baselines on confidence prediction and fact ranking due to its probabilistic calibration and ability to capture high-order dependencies among facts.


Improving Local Identifiability in Probabilistic Box Embeddings

arXiv.org Artificial Intelligence

Geometric embeddings have recently received attention for their natural ability to represent transitive asymmetric relations via containment. Box embeddings, where objects are represented by n-dimensional hyperrectangles, are a particularly promising example of such an embedding as they are closed under intersection and their volume can be calculated easily, allowing them to naturally represent calibrated probability distributions. The benefits of geometric embeddings also introduce a problem of local identifiability, however, where whole neighborhoods of parameters result in equivalent loss which impedes learning. Prior work addressed some of these issues by using an approximation to Gaussian convolution over the box parameters, however, this intersection operation also increases the sparsity of the gradient. In this work, we model the box parameters with min and max Gumbel distributions, which were chosen such that space is still closed under the operation of the intersection. The calculation of the expected intersection volume involves all parameters, and we demonstrate experimentally that this drastically improves the ability of such models to learn.


Energy-Based Reranking: Improving Neural Machine Translation Using Energy-Based Models

arXiv.org Machine Learning

The discrepancy between maximum likelihood estimation (MLE) and task measures such as BLEU score has been studied before for autoregressive neural machine translation (NMT) and resulted in alternative training algorithms (Ranzato et al., 2016; Norouzi et al., 2016; Shen et al., 2016; Wu et al., 2018). However, MLE training remains the de facto approach for autoregressive NMT because of its computational efficiency and stability. Despite this mismatch between the training objective and task measure, we notice that the samples drawn from an MLE-based trained NMT support the desired distribution -- there are samples with much higher BLEU score comparing to the beam decoding output. To benefit from this observation, we train an energy-based model to mimic the behavior of the task measure (i.e., the energy-based model assigns lower energy to samples with higher BLEU score), which is resulted in a re-ranking algorithm based on the samples drawn from NMT: energy-based re-ranking (EBR). Our EBR consistently improves the performance of the Transformer-based NMT: +3 BLEU points on Sinhala-English, +2.0 BLEU points on IWSLT'17 French-English, and +1.7 BLEU points on WMT'19 German-English tasks.


AutoKnow: Self-Driving Knowledge Collection for Products of Thousands of Types

arXiv.org Artificial Intelligence

Can one build a knowledge graph (KG) for all products in the world? Knowledge graphs have firmly established themselves as valuable sources of information for search and question answering, and it is natural to wonder if a KG can contain information about products offered at online retail sites. There have been several successful examples of generic KGs, but organizing information about products poses many additional challenges, including sparsity and noise of structured data for products, complexity of the domain with millions of product types and thousands of attributes, heterogeneity across large number of categories, as well as large and constantly growing number of products. We describe AutoKnow, our automatic (self-driving) system that addresses these challenges. The system includes a suite of novel techniques for taxonomy construction, product property identification, knowledge extraction, anomaly detection, and synonym discovery. AutoKnow is (a) automatic, requiring little human intervention, (b) multi-scalable, scalable in multiple dimensions (many domains, many products, and many attributes), and (c) integrative, exploiting rich customer behavior logs. AutoKnow has been operational in collecting product knowledge for over 11K product types.


Optimal Transport-based Alignment of Learned Character Representations for String Similarity

arXiv.org Machine Learning

String similarity models are vital for record linkage, entity resolution, and search. In this work, we present STANCE --a learned model for computing the similarity of two strings. Our approach encodes the characters of each string, aligns the encodings using Sinkhorn Iteration (alignment is posed as an instance of optimal transport) and scores the alignment with a convolutional neural network. We evaluate STANCE's ability to detect whether two strings can refer to the same entity--a task we term alias detection. We construct five new alias detection datasets (and make them publicly available). We show that STANCE or one of its variants outperforms both state-of-the-art and classic, parameter-free similarity models on four of the five datasets. We also demonstrate STANCE's ability to improve downstream tasks by applying it to an instance of cross-document coreference and show that it leads to a 2.8 point improvement in B^3 F1 over the previous state-of-the-art approach.


Supervised Hierarchical Clustering with Exponential Linkage

arXiv.org Machine Learning

In supervised clustering, standard techniques for learning a pairwise dissimilarity function often suffer from a discrepancy between the training and clustering objectives, leading to poor cluster quality. Rectifying this discrepancy necessitates matching the procedure for training the dissimilarity function to the clustering algorithm. In this paper, we introduce a method for training the dissimilarity function in a way that is tightly coupled with hierarchical clustering, in particular single linkage. However, the appropriate clustering algorithm for a given dataset is often unknown. Thus we introduce an approach to supervised hierarchical clustering that smoothly interpolates between single, average, and complete linkage, and we give a training procedure that simultaneously learns a linkage function and a dissimilarity function. We accomplish this with a novel Exponential Linkage function that has a learnable parameter that controls the interpolation. In experiments on four datasets, our joint training procedure consistently matches or outperforms the next best training procedure/linkage function pair and gives up to 8 points improvement in dendrogram purity over discrepant pairs.